Search results
Results from the WOW.Com Content Network
A locally cyclic group is a group in which each finitely generated subgroup is cyclic. An example is the additive group of the rational numbers: every finite set of rational numbers is a set of integer multiples of a single unit fraction, the inverse of their lowest common denominator, and generates as a subgroup a cyclic group of integer ...
The lattice of subgroups of the infinite cyclic group can be described in the same way, as the dual of the divisibility lattice of all positive integers. If the infinite cyclic group is represented as the additive group on the integers, then the subgroup generated by d is a subgroup of the subgroup generated by e if and only if e is a divisor ...
The additive group of rational numbers (Q, +) is locally cyclic – any pair of rational numbers a/b and c/d is contained in the cyclic subgroup generated by 1/(bd). [2]The additive group of the dyadic rational numbers, the rational numbers of the form a/2 b, is also locally cyclic – any pair of dyadic rational numbers a/2 b and c/2 d is contained in the cyclic subgroup generated by 1/2 max ...
A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.
Thompson's group is an example of a torsion-free group which is of type F ∞ but not of type F. [ 1 ] A reformulation of the F n property is that a group has it if and only if it acts properly discontinuously, freely and cocompactly on a CW-complex whose homotopy groups π 0 , … , π n − 1 {\displaystyle \pi _{0},\ldots ,\pi _{n-1}} vanish.
Examples of polycyclic groups include finitely generated abelian groups, finitely generated nilpotent groups, and finite solvable groups. Anatoly Maltsev proved that solvable subgroups of the integer general linear group are polycyclic; and later Louis Auslander (1967) and Swan proved the converse, that any polycyclic group is up to isomorphism a group of integer matrices. [1]
For example, Z no longer qualifies, since one has [0, n, −1] for every n. As a corollary to Ćwierczkowski's proof, every Archimedean cyclically ordered group is a subgroup of T itself. [ 3 ] This result is analogous to Otto Hölder 's 1901 theorem that every Archimedean linearly ordered group is a subgroup of R .
The 5th roots of unity in the complex plane form a group under multiplication. Each non-identity element generates the group. In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses.