Search results
Results from the WOW.Com Content Network
The envelope is acquired by the capsid from an intracellular membrane in the virus' host; examples include the inner nuclear membrane, the Golgi membrane, and the cell's outer membrane. [7] Once the virus has infected a cell and begins replicating itself, new capsid subunits are synthesized using the protein biosynthesis mechanism of the cell ...
To enter the cells, proteins on the surface of the virus interact with proteins of the cell. Attachment, or adsorption, occurs between the viral particle and the host cell membrane. A hole forms in the cell membrane, then the virus particle or its genetic contents are released into the host cell, where replication of the viral genome may commence.
Some species of virus envelop themselves in a modified form of one of the cell membranes, either the outer membrane surrounding an infected host cell or internal membranes such as a nuclear membrane or endoplasmic reticulum, thus gaining an outer lipid bilayer known as a viral envelope. This membrane is studded with proteins coded for by the ...
Viral entry via membrane fusion. The most well-known example is through membrane fusion. In a number of viruses with a viral envelope, viral receptors attach to the receptors on the surface of the cell and secondary receptors may be present to initiate the puncture of the membrane or fusion with the host cell. Following attachment, the viral ...
It is the first step of viral replication. Some viruses attach to the cell membrane of the host cell and inject its DNA or RNA into the host to initiate infection. Attachment to a host cell is often achieved by a virus attachment protein that extends from the protein shell (), of a virus.
The membrane fusion event that triggers viral entrance is caused by the viral membrane fusion protein. Many enveloped viruses only have one protein visible on the surface of the particle, which is required for both mediating adhesion to the cell surface and for the subsequent membrane fusion process.
Upon entering the cell, the virion disassembles and the genetic material from the virus takes control of the cell infrastructure, thus enabling the virus to replicate. [1] The genetic material (core, either DNA or RNA, along with occasionally present virus core protein) inside the virion is usually enclosed in a protection shell, known as the ...
The replication cycle of poliovirus is initiated by binding to the cell surface receptor CD155 (1). The virion forms a pore in the cell membrane through which viral RNA is released into the cytoplasm (2). Translation of the viral RNA occurs by an IRES-mediated mechanism (3). The polyprotein is cleaved, yielding mature viral proteins (4).