Search results
Results from the WOW.Com Content Network
When a muscle is stretched, sensory neurons within the muscle spindle detect the degree of stretch and send a signal to the CNS. The CNS activates alpha motor neurons in the spinal cord, which cause extrafusal muscle fibers to contract and thereby resist further stretching. This process is also called the stretch reflex.
A motor nerve, or efferent nerve, is a nerve that contains exclusively efferent nerve fibers and transmits motor signals from the central nervous system (CNS) to the muscles of the body. This is different from the motor neuron , which includes a cell body and branching of dendrites, while the nerve is made up of a bundle of axons.
These neurons transmit signals to the lower motor neurons in the spinal cord through axons known as the corticospinal tract. These impulses move to the neuromuscular junction (NMJ) of skeletal muscle via peripheral axons after synapsing with the lower motor neurons through the ventral horn of the spinal cord. A signal that travels to the NMJ ...
The sensory neurons involved in smell are called olfactory sensory neurons. These neurons contain receptors, called olfactory receptors, that are activated by odor molecules in the air. The molecules in the air are detected by enlarged cilia and microvilli. [5] These sensory neurons produce action potentials.
Efferent nerve fibers carry motor nerve signals from the anterior horn to the muscles Effector muscle innervated by the efferent nerve fiber carries out the response. A reflex arc, then, is the pathway followed by nerves which (a.) carry sensory information from the receptor to the spinal cord, and then (b.) carry the response generated by the ...
Sensory neurons are found in the back (dorsal) horns of the spinal cord's grey matter. They carry sensory information such as touch, pressure, and pain from the body to the spinal cord and brain. They carry sensory information such as touch, pressure, and pain from the body to the spinal cord and brain.
Upper motor neurons (UMNs) is a term introduced by William Gowers in 1886. They are found in the cerebral cortex and brainstem and carry information down to activate interneurons and lower motor neurons, which in turn directly signal muscles to contract or relax. UMNs represent the major origin point for voluntary somatic movement.
A sensory system consists of sensory neurons (including the sensory receptor cells), neural pathways, and parts of the brain involved in sensory perception and interoception. Commonly recognized sensory systems are those for vision , hearing , touch , taste , smell , balance and visceral sensation.