Search results
Results from the WOW.Com Content Network
This is an accepted version of this page This is the latest accepted revision, reviewed on 27 February 2025. Science of genes, heredity, and variation in living organisms This article is about the general scientific term. For the scientific journal, see Genetics (journal). For a more accessible and less technical introduction to this topic, see Introduction to genetics. For the Meghan Trainor ...
The modern study of genetics at the level of DNA is known as molecular ... you can determine which alleles are dominant and which are recessive. For example, if the ...
Precondition for the example: Two parent dogs (P-generation) are homozygous for two different genetic traits. In each case one parent has the dominant, one the recessive allele. Their offsprings in the F 1-generation are heterozygous at both loci and show the dominant traits in their phenotypes according to the law of dominance and uniformity.
Classical genetics is the Mendelian genetics or the older concepts of the genetics, which solely expressed based on the phenotypes resulted from breeding experiments while the modern genetics is the new concept of genetics, which allows the direct investigation of genotypes together with phenotypes. Monohybrid Cross (3:1) [2]
The underlying idea is to improve the genetic basis of future generations and reduce incidence of genetic diseases and other undesirable traits. Some of the practices included in new eugenics are: pre-implantation diagnosis and embryo selection, [ 4 ] selective breeding, [ 5 ] and human embryo engineering and gene therapy.
Medical genetics is the application of genetics to medical care. It overlaps human genetics, for example, research on the causes and inheritance of genetic disorders would be considered within both human genetics and medical genetics, while the diagnosis, management, and counseling of individuals with genetic disorders would be considered part ...
Modern genetic analysis began in the mid-1800s with research conducted by Gregor Mendel. Mendel, who is known as the "father of modern genetics", was inspired to study variation in plants. Between 1856 and 1863, Mendel cultivated and tested some 29,000 pea plants (i.e., Pisum sativum).
The history of genetics dates from the classical era with contributions by Pythagoras, Hippocrates, Aristotle, Epicurus, and others. Modern genetics began with the work of the Augustinian friar Gregor Johann Mendel .