Search results
Results from the WOW.Com Content Network
In neuroanatomy, the optic nerve, also known as the second cranial nerve, cranial nerve II, or simply CN II, is a paired cranial nerve that transmits visual information from the retina to the brain. In humans, the optic nerve is derived from optic stalks during the seventh week of development and is composed of retinal ganglion cell axons and ...
The information about the image via the eye is transmitted to the brain along the optic nerve. Different populations of ganglion cells in the retina send information to the brain through the optic nerve. About 90% of the axons in the optic nerve go to the lateral geniculate nucleus in the thalamus. These axons originate from the M, P, and K ...
In all vertebrates, the optic nerves of the left and the right eye meet in the body midline, ventral to the brain. In many vertebrates the left optic nerve crosses over the right one without fusing with it. [4] In vertebrates with a large overlap of the visual fields of the two eyes, i.e., most mammals and birds, but also amphibians, reptiles ...
The optic chiasm, or optic chiasma is the part of the brain where both optic nerves cross. It is located at the bottom of the brain immediately inferior to the hypothalamus . [ 7 ] Signs and symptoms associated with optic chiasm lesions are also known as chiasmal syndrome .
The retina (from Latin rete 'net'; pl. retinae or retinas) is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs.The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then processes that image within the retina and sends nerve impulses along the optic nerve to the visual cortex to create visual perception.
Visual phototransduction is the sensory transduction process of the visual system by which light is detected by photoreceptor cells (rods and cones) in the vertebrate retina.A photon is absorbed by a retinal chromophore (each bound to an opsin), which initiates a signal cascade through several intermediate cells, then through the retinal ganglion cells (RGCs) comprising the optic nerve.
The light circle is the optic disc where the optic nerve exits the retina. The visual system in the human brain is too slow to process information if images are slipping across the retina at more than a few degrees per second. [27] Thus, to be able to see while moving, the brain must compensate for the motion of the head by turning the eyes.
Cone cells and rods are connected through intermediate cells in the retina to nerve fibres of the optic nerve. When rods and cones are stimulated by light, they connect through adjoining cells within the retina to send an electrical signal to the optic nerve fibres. The optic nerves send off impulses through these fibres to the brain. [51]