Search results
Results from the WOW.Com Content Network
In practical terms, having an essentially self-adjoint operator is almost as good as having a self-adjoint operator, since we merely need to take the closure to obtain a self-adjoint operator. In physics, the term Hermitian refers to symmetric as well as self-adjoint operators alike. The subtle difference between the two is generally overlooked.
An operator that has a unique self-adjoint extension is said to be essentially self-adjoint; equivalently, an operator is essentially self-adjoint if its closure (the operator whose graph is the closure of the graph of ) is self-adjoint. In general, a symmetric operator could have many self-adjoint extensions or none at all.
In mathematics, an element of a *-algebra is called self-adjoint if it is the same as its adjoint ... Operator Algebras. Theory of C*-Algebras and von Neumann ...
An operator is called essentially self-adjoint if its closure is self-adjoint. [40] An operator is essentially self-adjoint if and only if it has one and only one self-adjoint extension. [24] A symmetric operator may have more than one self-adjoint extension, and even a continuum of them. [26] A densely defined, symmetric operator T is ...
Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint).
A natural partial ordering of self-adjoint operators arises from the definition of positive operators. Define if the following hold: and are self-adjoint; It can be seen that a similar result as the Monotone convergence theorem holds for monotone increasing, bounded, self-adjoint operators on Hilbert spaces. [2]
In functional analysis, the Friedrichs extension is a canonical self-adjoint extension of a non-negative densely defined symmetric operator.It is named after the mathematician Kurt Friedrichs.
The operator U is called a dilation of T and is uniquely determined if U is minimal, i.e. K is the smallest closed subspace invariant under U and U* containing H. In fact define [1] =, the orthogonal direct sum of countably many copies of H.