enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neural network (biology) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(biology)

    The aim of the field is to create models of biological neural systems in order to understand how biological systems work. To gain this understanding, neuroscientists strive to make a link between observed biological processes (data), biologically plausible mechanisms for neural processing and learning (neural network models) and theory ...

  3. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Here, each circular node represents an artificial neuron and an arrow represents a connection from the output of one artificial neuron to the input of another. In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural ...

  4. Biological neuron model - Wikipedia

    en.wikipedia.org/wiki/Biological_neuron_model

    Biological neuron models, ... (IMI) process. [76] ... While this model has seen success in machine-learning applications, it is a poor model for real (biological ...

  5. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    In neuroscience, a biological neural network is a physical structure found in brains and complex nervous systems – a population of nerve cells connected by synapses. In machine learning, an artificial neural network is a mathematical model used to approximate nonlinear functions.

  6. Models of neural computation - Wikipedia

    en.wikipedia.org/wiki/Models_of_neural_computation

    The NEURON software, developed at Duke University, is a simulation environment for modeling individual neurons and networks of neurons. [25] The NEURON environment is a self-contained environment allowing interface through its GUI or via scripting with hoc or python. The NEURON simulation engine is based on a Hodgkin–Huxley type model using a ...

  7. Artificial neuron - Wikipedia

    en.wikipedia.org/wiki/Artificial_neuron

    The output is analogous to the axon of a biological neuron, and its value propagates to the input of the next layer, through a synapse. It may also exit the system, possibly as part of an output vector. It has no learning process as such. Its activation function weights are calculated, and its threshold value is predetermined.

  8. Nervous system network models - Wikipedia

    en.wikipedia.org/wiki/Nervous_system_network_models

    It is hypothesized that the elementary biological unit is an active cell, called neuron, and the human machine is run by a vast network that connects these neurons, called neural (or neuronal) network. [5] The neural network is integrated with the human organs to form the human machine comprising the nervous system. [citation needed]

  9. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    Here is the output of the th node (neuron) and is the weighted sum of the input connections. Alternative activation functions have been proposed, including the rectifier and softplus functions. More specialized activation functions include radial basis functions (used in radial basis networks , another class of supervised neural network models).