enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Twelvefold way - Wikipedia

    en.wikipedia.org/wiki/Twelvefold_way

    In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.

  3. Combinatorial number system - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_number_system

    The number associated in the combinatorial number system of degree k to a k-combination C is the number of k-combinations strictly less than C in the given ordering. This number can be computed from C = {c k, ..., c 2, c 1} with c k > ... > c 2 > c 1 as follows.

  4. Combinations and permutations - Wikipedia

    en.wikipedia.org/wiki/Combinations_and_permutations

    Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...

  5. Combination - Wikipedia

    en.wikipedia.org/wiki/Combination

    These combinations (subsets) are enumerated by the 1 digits of the set of base 2 numbers counting from 0 to 2 n − 1, where each digit position is an item from the set of n. Given 3 cards numbered 1 to 3, there are 8 distinct combinations , including the empty set:

  6. Composition (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Composition_(combinatorics)

    Note that the ancient Sanskrit sages discovered many years before Fibonacci that the number of compositions of any natural number n as the sum of 1's and 2's is the nth Fibonacci number! Note that these are not general compositions as defined above because the numbers are restricted to 1's and 2's only. 1=1 (1) 2=1+1=2 (2) 3=1+1+1=1+2=2+1 (3)

  7. Combinatorics - Wikipedia

    en.wikipedia.org/wiki/Combinatorics

    [11] [12] In the Middle Ages, combinatorics continued to be studied, largely outside of the European civilization. The Indian mathematician Mahāvīra (c. 850) provided formulae for the number of permutations and combinations, [13] [14] and these formulas may have been familiar to Indian mathematicians as early as the 6th century CE. [15]

  8. Enumerative combinatorics - Wikipedia

    en.wikipedia.org/wiki/Enumerative_combinatorics

    Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets S i indexed by the natural numbers, enumerative combinatorics seeks to describe a counting function which counts the number of objects in S n for each n.

  9. Lottery mathematics - Wikipedia

    en.wikipedia.org/wiki/Lottery_mathematics

    The numerator equates to the number of ways to select the winning numbers multiplied by the number of ways to select the losing numbers. For a score of n (for example, if 3 choices match three of the 6 balls drawn, then n = 3), ( 6 n ) {\displaystyle {6 \choose n}} describes the odds of selecting n winning numbers from the 6 winning numbers.