Search results
Results from the WOW.Com Content Network
A spring system can be thought of as the simplest case of the finite element method for solving problems in statics. Assuming linear springs and small deformation (or restricting to one-dimensional motion) a spring system can be cast as a (possibly overdetermined) system of linear equations or equivalently as an energy minimization problem.
Classic model used for deriving the equations of a mass spring damper model. The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers. This model is well-suited for modelling object with complex material properties such as nonlinearity and viscoelasticity.
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
Materials undergoing strain are often modeled with mechanical components, such as springs (restorative force component) and dashpots (damping component).. Connecting a spring and damper in series yields a model of a Maxwell material while connecting a spring and damper in parallel yields a model of a Kelvin–Voigt material. [2]
In mathematical physics, a lattice model is a mathematical model of a physical system that is defined on a lattice, as opposed to a continuum, such as the continuum of space or spacetime. Lattice models originally occurred in the context of condensed matter physics , where the atoms of a crystal automatically form a lattice.
This is an approximation scheme that can be applied to find the solution to the eigenvalue equation for the Hamiltonian H of a quantum system with an applied perturbation, given the solution for the Hamiltonian H 0 for the unperturbed system. It involves expanding the eigenvalues and eigenkets of the Hamiltonian H in a perturbation series.
For example, consider a spring that has Q and q as, respectively, its force and deformation: The spring stiffness relation is Q = k q where k is the spring stiffness. Its flexibility relation is q = f Q, where f is the spring flexibility. Hence, f = 1/k. A typical member flexibility relation has the following general form:
which is an eigenvalue equation. Very often, only numerical solutions to the Schrödinger equation can be found for a given physical system and its associated potential energy. However, there exists a subset of physical systems for which the form of the eigenfunctions and their associated energies, or eigenvalues, can be found.