enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coupon collector's problem - Wikipedia

    en.wikipedia.org/wiki/Coupon_collector's_problem

    In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...

  3. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to 0.

  4. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    Once again, the answer can be reached without using the formula by applying the conditions to a hypothetical number of cases. For example, if the factory produces 1,000 items, 200 will be produced by A, 300 by B, and 500 by C. Machine A will produce 5% × 200 = 10 defective items, B 3% × 300 = 9, and C 1% × 500 = 5, for a total of 24.

  5. Secretary problem - Wikipedia

    en.wikipedia.org/wiki/Secretary_problem

    The secretary problem demonstrates a scenario involving optimal stopping theory [1] [2] that is studied extensively in the fields of applied probability, statistics, and decision theory. It is also known as the marriage problem , the sultan's dowry problem , the fussy suitor problem , the googol game , and the best choice problem .

  6. Buffon's needle problem - Wikipedia

    en.wikipedia.org/wiki/Buffon's_needle_problem

    The short-needle problem can also be solved without any integration, in a way that explains the formula for p from the geometric fact that a circle of diameter t will cross the distance t strips always (i.e. with probability 1) in exactly two spots. This solution was given by Joseph-Émile Barbier in 1860 [5] and is also referred to as "Buffon ...

  7. Stars and bars (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)

    If, for example, there are two balls and three bins, then the number of ways of placing the balls is (+) = =. The table shows the six possible ways of distributing the two balls, the strings of stars and bars that represent them (with stars indicating balls and bars separating bins from one another), and the subsets that correspond to the strings.

  8. Two envelopes problem - Wikipedia

    en.wikipedia.org/wiki/Two_envelopes_problem

    The problem concerns two envelopes, each containing an unknown amount of money. The two envelopes problem, also known as the exchange paradox, is a paradox in probability theory. It is of special interest in decision theory and for the Bayesian interpretation of probability theory. It is a variant of an older problem known as the necktie paradox.

  9. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    In probability theory, the law (or formula) of total probability is a fundamental rule relating marginal probabilities to conditional probabilities. It expresses the total probability of an outcome which can be realized via several distinct events , hence the name.