Search results
Results from the WOW.Com Content Network
The goal of a targeted drug delivery system is to prolong, localize, target and have a protected drug interaction with the diseased tissue. The conventional drug delivery system is the absorption of the drug across a biological membrane, whereas the targeted release system releases the drug in a dosage form.
Targeted drug delivery systems facilitate the selective delivery of therapeutic agents to specific disease sites while minimizing off-target effects. These systems employ strategies, such as nanoparticles, liposomes, and micelles, to encapsulate drugs and enhance their stability, solubility, and bioavailability. [15]
Overall, microdroplet-based drug delivery systems show great promise for revolutionizing medicine with significant potential for targeted drug delivery. Limitations Nevertheless, it is essential to note some common challenges associated with microdroplet-based drug delivery systems, including their biocompatibility, toxicity, and scalability. [2]
Interest in targeted drug delivery has grown drastically due to its potential implications in the treatment of cancers and other chronic diseases. [23] [24] [25] In order to achieve efficient targeted delivery, the designed system must avoid the host's defense mechanisms and circulate to its intended site of action. [26]
These drug delivery systems have been created to react to the pH environment of diseased or cancerous tissues, triggering structural and chemical changes within the drug delivery system. [3] This form of targeted drug delivery is to localize drug delivery, prolongs the drug's effect, and protect the drug from being broken down or eliminated by ...
Targeted cancer therapies are expected to be more effective than older forms of treatments and less harmful to normal cells. Many targeted therapies are examples of immunotherapy (using immune mechanisms for therapeutic goals) developed by the field of cancer immunology. Thus, as immunomodulators, they are one type of biological response modifiers.
Systems used with pH-responsive polymers include implantable hydrogels and micro- and nanoparticles. pH-responsive drug delivery systems are particularly suitable for the design of chemotherapeutic delivery systems due to the naturally low pH found in tumor microenvironments, but can be applied in other disease settings where the pH of the ...
For instance, by conjugating the RNA aptamer to a drug compound, the RNA aptamer can act as a targeted delivery system for that drug. [7] Such RNA aptamers are known as ApDCs. [7] Additionally, through conjugation to radioisotope or a fluorescent dye molecule, RNA aptamers may be useful in diagnostic imaging. [7] [104] [105]