enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance

    Bruker 700 MHz nuclear magnetic resonance (NMR) spectrometer. Nuclear Magnetic Resonance (NMR) basic principles. Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field [1]) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic ...

  3. Quantum mechanics of nuclear magnetic resonance (NMR ...

    en.wikipedia.org/wiki/Quantum_mechanics_of...

    Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not 0, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.

  4. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  5. Zeeman effect - Wikipedia

    en.wikipedia.org/wiki/Zeeman_effect

    (C) With magnetic field, split as longitudinal Zeeman effect. The spectral lines were obtained using a Fabry–Pérot interferometer. Zeeman splitting of the 5s level of 87 Rb, including fine structure and hyperfine structure splitting. Here F = J + I, where I is the nuclear spin (for 87 Rb, I = 3 ⁄ 2).

  6. Spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Spectroscopy

    Nuclear magnetic resonance (NMR) spectroscopy is a widely used resonance method, and ultrafast laser spectroscopy is also possible in the infrared and visible spectral regions. Nuclear spectroscopy are methods that use the properties of specific nuclei to probe the local structure in matter, mainly condensed matter , molecules in liquids or ...

  7. Relaxation (NMR) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(NMR)

    In magnetic resonance imaging (MRI) and nuclear magnetic resonance spectroscopy (NMR), an observable nuclear spin polarization (magnetization) is created by a homogeneous magnetic field. This field makes the magnetic dipole moments of the sample precess at the resonance frequency of the nuclei. At thermal equilibrium, nuclear spins precess ...

  8. Hyperfine structure - Wikipedia

    en.wikipedia.org/wiki/Hyperfine_structure

    In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate electronic energy levels and the resulting splittings in those electronic energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds.

  9. Magnetic resonance (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Magnetic_resonance...

    The Rabi frequency should not be confused with the field's own frequency. Since many atomic nuclei species can behave as a magnetic dipole, this resonance technique is the basis of nuclear magnetic resonance, including nuclear magnetic resonance imaging and nuclear magnetic resonance spectroscopy.