Search results
Results from the WOW.Com Content Network
Excel graph of the difference between two evaluations of the smallest root of a quadratic: direct evaluation using the quadratic formula (accurate at smaller b) and an approximation for widely spaced roots (accurate for larger b). The difference reaches a minimum at the large dots, and round-off causes squiggles in the curves beyond this minimum.
Gauss–Kronrod formulas are extensions of the Gauss quadrature formulas generated by adding + points to an -point rule in such a way that the resulting rule is exact for polynomials of degree less than or equal to + (Laurie (1997, p. 1133); the corresponding Gauss rule is of order ).
Formulas in the B column multiply values from the A column using relative references, and the formula in B4 uses the SUM() function to find the sum of values in the B1:B3 range. A formula identifies the calculation needed to place the result in the cell it is contained within. A cell containing a formula, therefore, has two display components ...
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. [1] Divided differences is a recursive division process.
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
Jenks used the analogy of a “blanket of error” to describe the need to use elements other than the mean to generalize data. The three dimensional models were created to help Jenks visualize the difference between data classes. His aim was to generalize the data using as few planes as possible and maintain a constant “blanket of error”.
The function depends on three parameters, the input x, the "left edge" and the "right edge", with the left edge being assumed smaller than the right edge. The function receives a real number x as an argument and returns 0 if x is less than or equal to the left edge, 1 if x is greater than or equal to the right edge, and smoothly interpolates ...