enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Negative energy - Wikipedia

    en.wikipedia.org/wiki/Negative_energy

    The negative-energy particle then crosses the event horizon into the black hole, with the law of conservation of energy requiring that an equal amount of positive energy should escape. In the Penrose process , a body divides in two, with one half gaining negative energy and falling in, while the other half gains an equal amount of positive ...

  3. Spontaneous process - Wikipedia

    en.wikipedia.org/wiki/Spontaneous_process

    In thermodynamics, a spontaneous process is a process which occurs without any external input to the system. A more technical definition is the time-evolution of a system in which it releases free energy and it moves to a lower, more thermodynamically stable energy state (closer to thermodynamic equilibrium).

  4. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    A vacuum can be viewed not as empty space but as the combination of all zero-point fields. In quantum field theory this combination of fields is called the vacuum state, its associated zero-point energy is called the vacuum energy and the average energy value is called the vacuum expectation value (VEV) also called its condensate.

  5. Vacuum energy - Wikipedia

    en.wikipedia.org/wiki/Vacuum_energy

    The field strength of vacuum energy is a concept proposed in a theoretical study that explores the nature of the vacuum and its relationship to gravitational interactions. The study derived a mathematical framework that uses the field strength of vacuum energy as an indicator of the bulk (spacetime) resistance to localized curvature.

  6. Vacuum - Wikipedia

    en.wikipedia.org/wiki/Vacuum

    As a result, QED vacuum contains vacuum fluctuations (virtual particles that hop into and out of existence), and a finite energy called vacuum energy. Vacuum fluctuations are an essential and ubiquitous part of quantum field theory. Some experimentally verified effects of vacuum fluctuations include spontaneous emission and the Lamb shift. [15]

  7. Dirac sea - Wikipedia

    en.wikipedia.org/wiki/Dirac_sea

    The Dirac sea is a theoretical model of the electron vacuum as an infinite sea of electrons with negative energy, now called positrons. It was first postulated by the British physicist Paul Dirac in 1930 [1] to explain the anomalous negative-energy quantum states predicted by the relativistically-correct Dirac equation for electrons. [2]

  8. Solvation - Wikipedia

    en.wikipedia.org/wiki/Solvation

    The difference in energy between that which is necessary to release an ion from its lattice and the energy given off when it combines with a solvent molecule is called the enthalpy change of solution. A negative value for the enthalpy change of solution corresponds to an ion that is likely to dissolve, whereas a high positive value means that ...

  9. Cosmological constant problem - Wikipedia

    en.wikipedia.org/wiki/Cosmological_constant_problem

    The calculated vacuum energy is a positive, rather than negative, contribution to the cosmological constant because the existing vacuum has negative quantum-mechanical pressure, while in general relativity, the gravitational effect of negative pressure is a kind of repulsion.