enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_test

    A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...

  3. Yates's correction for continuity - Wikipedia

    en.wikipedia.org/wiki/Yates's_correction_for...

    This reduces the chi-squared value obtained and thus increases its p-value. The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. = =

  4. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    The chi-squared statistic can then be used to calculate a p-value by comparing the value of the statistic to a chi-squared distribution. The number of degrees of freedom is equal to the number of cells , minus the reduction in degrees of freedom, . The chi-squared statistic can be also calculated as

  5. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    The simplest chi-squared distribution is the square of a standard normal distribution. So wherever a normal distribution could be used for a hypothesis test, a chi-squared distribution could be used. Suppose that Z {\displaystyle Z} is a random variable sampled from the standard normal distribution, where the mean is 0 {\displaystyle 0} and the ...

  6. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    The "step" line relates to Chi-Square test on the step level while variables included in the model step by step. Note that in the output a step chi-square, is the same as the block chi-square since they both are testing the same hypothesis that the tested variables enter on this step are non-zero.

  7. McNemar's test - Wikipedia

    en.wikipedia.org/wiki/McNemar's_test

    The Stuart–Maxwell test is different generalization of the McNemar test, used for testing marginal homogeneity in a square table with more than two rows/columns. [12] [13] [14] The Bhapkar's test (1966) is a more powerful alternative to the Stuart–Maxwell test, [15] [16] but it tends to be liberal. Competitive alternatives to the extant ...

  8. Phi coefficient - Wikipedia

    en.wikipedia.org/wiki/Phi_coefficient

    In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.

  9. Boschloo's test - Wikipedia

    en.wikipedia.org/wiki/Boschloo's_test

    Boschloo's test is a statistical hypothesis test for analysing 2x2 contingency tables. It examines the association of two Bernoulli distributed random variables and is a uniformly more powerful alternative to Fisher's exact test. It was proposed in 1970 by R. D. Boschloo. [1]