Search results
Results from the WOW.Com Content Network
Flavin adenine dinucleotide consists of two portions: the adenine nucleotide (adenosine monophosphate) and the flavin mononucleotide (FMN) bridged together through their phosphate groups. Adenine is bound to a cyclic ribose at the 1' carbon, while phosphate is bound to the ribose at the 5' carbon to form the adenine nucledotide.
The medium chain acyl-CoA dehydrogenase (MCAD) is the best known structure of all ACADs, and is the most commonly deficient enzyme within the class that leads to metabolic disorders in animals. [1] This protein is a homotetramer with each subunit containing roughly 400 amino acids and one equivalent of FAD per monomer.
The three substrates of this enzyme are NADPH, H +, and oxidized hemoprotein, whereas its two products are NADP + and reduced hemoprotein. It has two cofactors: flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN). This enzyme belongs to the family of oxidoreductases, specifically those acting on NADH or NADPH with a heme protein ...
The flavin is generally tightly bound (as in adrenodoxin reductase, wherein the FAD is buried deeply). [1] About 5-10% of flavoproteins have a covalently linked FAD. [ 2 ] Based on the available structural data, FAD-binding sites can be divided into more than 200 different types.
The systematic name of this enzyme class is (6S)-6-β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase (ATP-hydrolysing; NADH-forming). Other names in common use include reduced nicotinamide adenine dinucleotide hydrate dehydratase , ATP-dependent H4NAD(P)+OH dehydratase , (6 S )-β-6-hydroxy-1,4,5,6 ...
In enzymology, a glutamate synthase (NADPH) (EC 1.4.1.13) is an enzyme that catalyzes the chemical reaction. L-glutamine + 2-oxoglutarate + NADPH + H + 2 L-glutamate + NADP + Thus, the four substrates of this enzyme are L-glutamine, 2-oxoglutarate (α-ketoglutarate), NADPH, and H +, whereas the two products are L-glutamate and NADP +.
Flavin reductase is a dimer made up of two subunits. Each subunit is similar. Flavin reductase P, FRP, was studied by Tanner, Lei, Tu and Krause and was discovered to have a structure made up of two subunits each containing a sandwich domain and an excursion domain.
NADP is a reducing agent in anabolic reactions like the Calvin cycle and lipid and nucleic acid syntheses. NADP exists in two forms: NADP+, the oxidized form, and NADPH, the reduced form. NADP is similar to nicotinamide adenine dinucleotide (NAD), but NADP has a phosphate group at the C-2′ position of the adenosyl