enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Ranknullity_theorem

    Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  3. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    The rank of a matrix plus the nullity of the matrix equals the number of columns of the matrix. (This is the rank–nullity theorem.) If A is a matrix over the real numbers then the rank of A and the rank of its corresponding Gram matrix are equal.

  4. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The dimension of the null space is called the nullity of the matrix, and is related to the rank by the following equation: ⁡ + ⁡ =, where n is the number of columns of the matrix A. The equation above is known as the rank–nullity theorem.

  5. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    In the case where V is finite-dimensional, this implies the rank–nullity theorem: ⁡ (⁡) + ⁡ (⁡) = ⁡ (). where the term rank refers to the dimension of the image of L, ⁡ (⁡), while nullity refers to the dimension of the kernel of L, ⁡ (⁡). [4] That is, ⁡ = ⁡ (⁡) ⁡ = ⁡ (⁡), so that the rank–nullity theorem can be ...

  6. Quotient space (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Quotient_space_(linear...

    The first isomorphism theorem for vector spaces says that the quotient space V/ker(T) is isomorphic to the image of V in W. An immediate corollary, for finite-dimensional spaces, is the rank–nullity theorem: the dimension of V is equal to the dimension of the kernel (the nullity of T) plus the dimension of the image (the rank of T).

  7. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The procedure outlined in the previous paragraph can be used to determine the structure of these matrices. Since the rank of a matrix is preserved by similarity transformation, there is a bijection between the Jordan blocks of J 1 and J 2. This proves the uniqueness part of the statement.

  8. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    In this case, the kernel of T may be identified to the kernel of the matrix M, also called "null space" of M. The dimension of the null space, called the nullity of M, is given by the number of columns of M minus the rank of M, as a consequence of the rank–nullity theorem.

  9. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    An equivalent definition of a vector space can be given, which is much more concise but less elementary: the first four axioms (related to vector addition) say that a vector space is an abelian group under addition, and the four remaining axioms (related to the scalar multiplication) say that this operation defines a ring homomorphism from the ...