enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conjugate hyperbola - Wikipedia

    en.wikipedia.org/wiki/Conjugate_hyperbola

    A hyperbola and its conjugate hyperbola. In geometry, a conjugate hyperbola to a given hyperbola shares the same asymptotes but lies in the opposite two sectors of the plane compared to the original hyperbola. A hyperbola and its conjugate may be constructed as conic sections obtained from an intersecting plane that meets tangent double cones ...

  3. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    The eccentricity can be defined as the ratio of the linear eccentricity to the semimajor axis a: that is, = (lacking a center, the linear eccentricity for parabolas is not defined). It is worth to note that a parabola can be treated as an ellipse or a hyperbola, but with one focal point at infinity .

  4. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Hyperbola: the midpoints of parallel chords lie on a line. Hyperbola: the midpoint of a chord is the midpoint of the corresponding chord of the asymptotes. The midpoints of parallel chords of a hyperbola lie on a line through the center (see diagram). The points of any chord may lie on different branches of the hyperbola.

  5. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    (Given the lunar orbit's eccentricity e = 0.0549, its semi-minor axis is 383,800 km. Thus the Moon's orbit is almost circular.) Thus the Moon's orbit is almost circular.) The barycentric lunar orbit, on the other hand, has a semi-major axis of 379,730 km, the Earth's counter-orbit taking up the difference, 4,670 km.

  6. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    A pencil of confocal ellipses and hyperbolas is specified by choice of linear eccentricity c (the x-coordinate of one focus) and can be parametrized by the semi-major axis a (the x-coordinate of the intersection of a specific conic in the pencil and the x-axis). When 0 < a < c the conic is a hyperbola; when c < a the conic is an ellipse.

  7. Unit hyperbola - Wikipedia

    en.wikipedia.org/wiki/Unit_hyperbola

    The unit hyperbola is blue, its conjugate is green, and the asymptotes are red. In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation = In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length

  8. Split-complex number - Wikipedia

    en.wikipedia.org/wiki/Split-complex_number

    The case a = 1 is called the unit hyperbola. The conjugate hyperbola is given by {: ‖ ‖ =} with an upper and lower branch passing through (0, a) and (0, −a). The hyperbola and conjugate hyperbola are separated by two diagonal asymptotes which form the set of null elements:

  9. Hyperbolic trajectory - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_trajectory

    With eccentricity just over 1 the hyperbola is a sharp "v" shape. At e = 2 {\displaystyle e={\sqrt {2}}} the asymptotes are at right angles. With e > 2 {\displaystyle e>2} the asymptotes are more than 120° apart, and the periapsis distance is greater than the semi major axis.