enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mendelian traits in humans - Wikipedia

    en.wikipedia.org/wiki/Mendelian_traits_in_humans

    Therefore no trait is purely Mendelian, but many traits are almost entirely Mendelian, including canonical examples, such as those listed below. Purely Mendelian traits are a minority of all traits, since most phenotypic traits exhibit incomplete dominance, codominance, and contributions from many genes.

  3. Dominance (genetics) - Wikipedia

    en.wikipedia.org/wiki/Dominance_(genetics)

    Co-dominance, where allelic products co-exist in the phenotype, is different from incomplete dominance, where the quantitative interaction of allele products produces an intermediate phenotype. For example, in co-dominance, a red homozygous flower and a white homozygous flower will produce offspring that have red and white spots.

  4. Simple Mendelian genetics in humans - Wikipedia

    en.wikipedia.org/wiki/Simple_Mendelian_genetics...

    Very few phenotypes are purely Mendelian traits. Common violations of the Mendelian model include incomplete dominance, codominance, genetic linkage, environmental effects, and quantitative contributions from a number of genes (see: gene interactions, polygenic inheritance, oligogenic inheritance). [1] [2]

  5. Genotype - Wikipedia

    en.wikipedia.org/wiki/Genotype

    Codominance refers to traits in which both alleles are expressed in the offspring in approximately equal amounts. [20] A classic example is the ABO blood group system in humans, where both the A and B alleles are expressed when they are present. Individuals with the AB genotype have both A and B proteins expressed on their red blood cells.

  6. Sickle cell trait - Wikipedia

    en.wikipedia.org/wiki/Sickle_cell_trait

    This is because the sickling happens only at low oxygen concentrations. With regards to the actual concentration of hemoglobin in the circulating cells, the alleles demonstrate co-dominance as both 'normal' and mutant forms co-exist in the bloodstream. Thus it is an ambiguous condition showing both incomplete dominance and co-dominance.

  7. Non-Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Non-Mendelian_inheritance

    An example in dog coat genetics is the homozygosity with the allele "e e" on the Extension-locus making it impossible to produce any other pigment than pheomelanin. Although the allele "e" is a recessive allele on the extension-locus itself, the presence of two copies leverages the dominance of other coat colour genes.

  8. Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Mendelian_inheritance

    Precondition for the example: Two parent dogs (P-generation) are homozygous for two different genetic traits. In each case one parent has the dominant, one the recessive allele. Their offsprings in the F 1-generation are heterozygous at both loci and show the dominant traits in their phenotypes according to the law of dominance and uniformity.

  9. X-linked dominant inheritance - Wikipedia

    en.wikipedia.org/wiki/X-linked_dominant_inheritance

    A few scholars have suggested discontinuing the use of the terms dominant and recessive when referring to X-linked inheritance, stating that the highly variable penetrance of X-linked traits in females as a result of mechanisms such as skewed X-inactivation or somatic mosaicism is difficult to reconcile with standard definitions of dominance ...