enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallelogram of force - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_of_force

    Figure 1: Parallelogram construction for adding vectors. This construction has the same result as moving F 2 so its tail coincides with the head of F 1, and taking the net force as the vector joining the tail of F 1 to the head of F 2. This procedure can be repeated to add F 3 to the resultant F 1 + F 2, and so forth.

  3. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    A body is said to be "free" when it is singled out from other bodies for the purposes of dynamic or static analysis. The object does not have to be "free" in the sense of being unforced, and it may or may not be in a state of equilibrium; rather, it is not fixed in place and is thus "free" to move in response to forces and torques it may experience.

  4. Exact solutions of classical central-force problems - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_of...

    In the classical central-force problem of classical mechanics, some potential energy functions () produce motions or orbits that can be expressed in terms of well-known functions, such as the trigonometric functions and elliptic functions. This article describes these functions and the corresponding solutions for the orbits.

  5. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    A more complex example is the Cauchy stress tensor T, which takes a directional unit vector v as input and maps it to the stress vector T (v), which is the force (per unit area) exerted by material on the negative side of the plane orthogonal to v against the material on the positive side of the plane, thus expressing a relationship between ...

  6. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    Resolving force vectors into components of a set of basis vectors is often a more mathematically clean way to describe forces than using magnitudes and directions. [30] This is because, for orthogonal components, the components of the vector sum are uniquely determined by the scalar addition of the components of the individual vectors.

  7. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [9] [10] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.

  8. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The forces acting on a body add as vectors, and so the total force on a body depends upon both the magnitudes and the directions of the individual forces. [23]: 58 When the net force on a body is equal to zero, then by Newton's second law, the body does not accelerate, and it is said to be in mechanical equilibrium.

  9. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    Given a subset S of R n, a vector field is represented by a vector-valued function V: S → R n in standard Cartesian coordinates (x 1, …, x n).If each component of V is continuous, then V is a continuous vector field.