enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The encoding scheme for these binary interchange formats is the same as that of IEEE 754-1985: a sign bit, followed by w exponent bits that describe the exponent offset by a bias, and p − 1 bits that describe the significand.

  3. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    The number 0.15625 represented as a single-precision IEEE 754-1985 floating-point number. See text for explanation. The three fields in a 64bit IEEE 754 float. Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased exponent, and a fraction. The following example illustrates the meaning of each.

  4. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    If an IEEE 754 single-precision number is converted to a decimal string with at least 9 significant digits, and then converted back to single-precision representation, the final result must match the original number. [6] The sign bit determines the sign of the number, which is the sign of the significand as well. "1" stands for negative.

  5. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    A minifloat in 1 byte (8 bit) with 1 sign bit, 4 exponent bits and 3 significand bits (in short, a 1.4.3 minifloat) is demonstrated here. The exponent bias is defined as 7 to center the values around 1 to match other IEEE 754 floats [3] [4] so (for most values) the actual multiplier for exponent x is 2 x−7. All IEEE 754 principles should be ...

  6. Octuple-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Octuple-precision_floating...

    In its 2008 revision, the IEEE 754 standard specifies a binary256 format among the interchange formats (it is not a basic format), as having: Sign bit: 1 bit; Exponent width: 19 bits; Significand precision: 237 bits (236 explicitly stored) The format is written with an implicit lead bit with value 1 unless the exponent is all zeros.

  7. IEEE 754-2008 revision - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-2008_revision

    The new IEEE 754 (formally IEEE Std 754-2008, the IEEE Standard for Floating-Point Arithmetic) was published by the IEEE Computer Society on 29 August 2008, and is available from the IEEE Xplore website [4] This standard replaces IEEE 754-1985. IEEE 854, the Radix-Independent floating-point standard was withdrawn in December 2008.

  8. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    IEEE 754 defines the precision p to be the number of digits in the significand, including any implicit leading bit (e.g., p = 53 for the double-precision format), thus in a way independent from the encoding, and the term to express what is encoded (that is, the significand without its leading bit) is trailing significand field.

  9. Exponent bias - Wikipedia

    en.wikipedia.org/wiki/Exponent_bias

    By arranging the fields such that the sign bit takes the most significant bit position, the biased exponent takes the middle position, then the significand will be the least significant bits and the resulting value will be ordered properly. This is the case whether or not it is interpreted as a floating-point or integer value.