Search results
Results from the WOW.Com Content Network
A vortex sheet is a term used in fluid mechanics for a surface across which there is a discontinuity in fluid velocity, such as in slippage of one layer of fluid over another. [1] While the tangential components of the flow velocity are discontinuous across the vortex sheet, the normal component of the flow velocity is continuous.
The concentration of particles usually spreads out in a straight line, and the Rouse distribution works in the water column above the sheet-flow layer where the particles are less concentrated. However, velocity distribution formulas are still being refined to accurately describe particle velocity profiles in steady or oscillatory sheet flows. [2]
The critical velocity for deposition, on the other hand, depends on the settling velocity, and that decreases with decreasing grainsize. The Hjulström curve shows that sand particles of a size around 0.1 mm require the lowest stream velocity to erode. The curve was expanded by Åke Sundborg in 1956.
In hydrology, discharge is the volumetric flow rate (volume per time, in units of m 3 /h or ft 3 /h) of a stream.It equals the product of average flow velocity (with dimension of length per time, in m/h or ft/h) and the cross-sectional area (in m 2 or ft 2). [1]
It is described by the fact that the discharge through a river of an approximate rectangular cross-section must, through conservation of mass, equal Q = u ¯ b h {\displaystyle Q={\bar {u}}bh} where Q {\displaystyle Q} is the volumetric discharge, u ¯ {\displaystyle {\bar {u}}} is the mean flow velocity, b {\displaystyle b} is the channel ...
Shear velocity also helps in thinking about the rate of shear and dispersion in a flow. Shear velocity scales well to rates of dispersion and bedload sediment transport. A general rule is that the shear velocity is between 5% and 10% of the mean flow velocity. For river base case, the shear velocity can be calculated by Manning's equation.
As the fluid flows outward, the area of flow increases. As a result, to satisfy continuity equation, the velocity decreases and the streamlines spread out. The velocity at all points at a given distance from the source is the same. Fig 2 - Streamlines and potential lines for source flow. The velocity of fluid flow can be given as -
In many engineering applications the local flow velocity vector field is not known in every point and the only accessible velocity is the bulk velocity or average flow velocity ¯ (with the usual dimension of length per time), defined as the quotient between the volume flow rate ˙ (with dimension of cubed length per time) and the cross sectional area (with dimension of square length):