Search results
Results from the WOW.Com Content Network
The distinction between a polynomial expression and the polynomial that it represents is relatively recent, and mainly motivated by the rise of computer algebra, where, for example, the test whether two polynomial expressions represent the same polynomial may be a nontrivial computation.
In mathematics, the method of equating the coefficients is a way of solving a functional equation of two expressions such as polynomials for a number of unknown parameters. It relies on the fact that two expressions are identical precisely when corresponding coefficients are equal for each different type of term.
Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a sum of (repeated) products. During the expansion, simplifications such as grouping of like terms or ...
According to the definition of polynomial functions, there may be expressions that obviously are not polynomials but nevertheless define polynomial functions. An example is the expression (), which takes the same values as the polynomial on the interval [,], and thus both expressions define the same polynomial function on this interval.
In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients that is equal to zero if and only if the polynomials have a common root (possibly in a field extension), or, equivalently, a common factor (over their field of coefficients).
The expression + + , especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two. In elementary mathematics a polynomial and its associated polynomial function are rarely distinguished and the terms quadratic function and quadratic polynomial are nearly synonymous and ...
Terms are within the same expression and are combined by either addition or subtraction. For example, take the expression: + There are two terms in this expression. Notice that the two terms have a common factor, that is, both terms have an . This means that the common factor variable can be factored out, resulting in
For example the above polynomial expression is equivalent (denote the same polynomial as + + Many author do not distinguish polynomials and polynomial expressions. In this case the expression of a polynomial expression as a linear combination is called the canonical form , normal form , or expanded form of the polynomial.