Search results
Results from the WOW.Com Content Network
For example, in the quadratic polynomial, + +, The number 3 is a constant term. [1] After like terms are combined, an algebraic expression will have at most one constant term. Thus, it is common to speak of the quadratic polynomial + +,
According to the definition of polynomial functions, there may be expressions that obviously are not polynomials but nevertheless define polynomial functions. An example is the expression (), which takes the same values as the polynomial on the interval [,], and thus both expressions define the same polynomial function on this interval.
For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...
For example the above polynomial expression is equivalent (denote the same polynomial as + + Many author do not distinguish polynomials and polynomial expressions. In this case the expression of a polynomial expression as a linear combination is called the canonical form , normal form , or expanded form of the polynomial.
The roots, stationary points, inflection point and concavity of a cubic polynomial x 3 − 6x 2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. The critical points of a cubic function are its stationary points , that is the points where the slope of the function is zero. [ 2 ]
Finding the roots (zeros) of a given polynomial has been a prominent mathematical problem.. Solving linear, quadratic, cubic and quartic equations in terms of radicals and elementary arithmetic operations on the coefficients can always be done, no matter whether the roots are rational or irrational, real or complex; there are formulas that yield the required solutions.
For instance, the polynomial x 2 + 3x + 2 is an example of this type of trinomial with n = 1. The solution a 1 = −2 and a 2 = −1 of the above system gives the trinomial factorization: x 2 + 3x + 2 = (x + a 1)(x + a 2) = (x + 2)(x + 1). The same result can be provided by Ruffini's rule, but with a more complex and time-consuming process.
In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or any expression. For example, in the polynomial + +, with variables and , the first two terms have the coefficients 7 and −3. The third term 1.5 is the constant coefficient.