Ads
related to: solving systems of inequalities worksheets free
Search results
Results from the WOW.Com Content Network
Systems of linear inequalities can be simplified by Fourier–Motzkin elimination. [ 17 ] The cylindrical algebraic decomposition is an algorithm that allows testing whether a system of polynomial equations and inequalities has solutions, and, if solutions exist, describing them.
However, the elimination process results in a new system that possibly contains more inequalities than the original. Yet, often some of the inequalities in the reduced system are redundant. Redundancy may be implied by other inequalities or by inequalities in information theory (a.k.a. Shannon type inequalities).
Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]
Two linear systems using the same set of variables are equivalent if each of the equations in the second system can be derived algebraically from the equations in the first system, and vice versa. Two systems are equivalent if either both are inconsistent or each equation of each of them is a linear combination of the equations of the other one.
Bernstein inequalities (probability theory) Boole's inequality; Borell–TIS inequality; BRS-inequality; Burkholder's inequality; Burkholder–Davis–Gundy inequalities; Cantelli's inequality; Chebyshev's inequality; Chernoff's inequality; Chung–ErdÅ‘s inequality; Concentration inequality; Cramér–Rao inequality; Doob's martingale inequality
For getting an algorithm that can be implemented and can solve systems of polynomial equations and inequalities, George Collins introduced the cylindrical algebraic decomposition that became a fundamental tool in real algebraic geometry. [123]
The overdetermined case occurs when the system has been overconstrained — that is, when the equations outnumber the unknowns. In contrast, the underdetermined case occurs when the system has been underconstrained — that is, when the number of equations is fewer than the number of unknowns. Such systems usually have an infinite number of ...
In linear systems, indeterminacy occurs if and only if the number of independent equations (the rank of the augmented matrix of the system) is less than the number of unknowns and is the same as the rank of the coefficient matrix. For if there are at least as many independent equations as unknowns, that will eliminate any stretches of overlap ...
Ads
related to: solving systems of inequalities worksheets free