Search results
Results from the WOW.Com Content Network
fork() is the name of the system call that the parent process uses to "divide" itself ("fork") into two identical processes. After calling fork(), the created child process is an exact copy of the parent except for the return value of the fork() call. This includes open files, register state, and all memory allocations, which includes the ...
Fork and its variants are typically the only way of doing so in Unix-like systems. For a process to start the execution of a different program, it first forks to create a copy of itself. Then, the copy, called the " child process ", calls the exec system call to overlay itself with the other program: it ceases execution of its former program in ...
The exec calls named ending with an e alter the environment for the new process image by passing a list of environment settings through the envp argument. This argument is an array of character pointers; each element (except for the final element) points to a null-terminated string defining an environment variable .
David A. Wheeler notes [9] four possible outcomes of a fork, with examples: The death of the fork. This is by far the most common case. It is easy to declare a fork, but considerable effort to continue independent development and support. A re-merging of the fork (e.g., egcs becoming "blessed" as the new version of GNU Compiler Collection.)
Copy-on-write (COW), also called implicit sharing [1] or shadowing, [2] is a resource-management technique [3] used in programming to manage shared data efficiently. Instead of copying data right away when multiple programs use it, the same data is shared between programs until one tries to modify it.
WineX (later Cedega), was a proprietary fork of Wine. XOrg , from XFree86 , in order to adopt a more open development model and due to concerns over the latter's change to a license many distributors found unacceptable.
In the C and C++ programming languages, unistd.h is the name of the header file that provides access to the POSIX operating system API. [1] It is defined by the POSIX.1 standard, the base of the Single Unix Specification, and should therefore be available in any POSIX-compliant operating system and compiler.
Implementations of the fork–join model will typically fork tasks, fibers or lightweight threads, not operating-system-level "heavyweight" threads or processes, and use a thread pool to execute these tasks: the fork primitive allows the programmer to specify potential parallelism, which the implementation then maps onto actual parallel execution. [1]