Search results
Results from the WOW.Com Content Network
The Henderson–Hasselbalch equation can be used to estimate the pH of a buffer solution by approximating the actual concentration ratio as the ratio of the analytical concentrations of the acid and of a salt, MA. The equation can also be applied to bases by specifying the protonated form of the base as the acid.
In aqueous solution, ammonia deprotonates a small fraction of the water to give ammonium and hydroxide according to the following equilibrium: . NH 3 + H 2 O ⇌ NH + 4 + OH −.. In a 1 M ammonia solution, about 0.42% of the ammonia is converted to ammonium, equivalent to pH = 11.63 because [NH +
A buffer solution is a solution where the pH does not change significantly on dilution or if an acid or base is added at constant temperature. [1] Its pH changes very little when a small amount of strong acid or base is added to it. Buffer solutions are used as a means of keeping pH at a nearly constant value in a wide variety of chemical ...
What we see is formulations like "a 3:1 mixture of ammonium hydroxide (NH4OH) with hydrogen peroxide" (from article on Piranha solution). What does this say about stoichiometry? This suggests that "ammonium hydroxide" (NH4OH) should be used (if at all) only if it is really about ammonia (NH3) and water (H2O) in a 1:1 ratio, right?
The "dilution factor" is an expression which describes the ratio of the aliquot volume to the final volume. Dilution factor is a notation often used in commercial assays. For example, in solution with a 1/5 dilution factor (which may be abbreviated as x5 dilution ), entails combining 1 unit volume of solute (the material to be diluted) with ...
To calibrate the electrode, it is first immersed in a standard solution, and the reading on a pH meter is adjusted to be equal to the standard buffer's value. The reading from a second standard buffer solution is then adjusted using the "slope" control to be equal to the pH for that solution. Further details, are given in the IUPAC ...
The "Food Wish Method": Chef John's Mathematical Formula for Cooking Prime Rib. Multiply the exact weight of your prime rib by 5 minutes (round up to the nearest minute).
Thus, to calculate the stoichiometry by mass, the number of molecules required for each reactant is expressed in moles and multiplied by the molar mass of each to give the mass of each reactant per mole of reaction. The mass ratios can be calculated by dividing each by the total in the whole reaction.