Search results
Results from the WOW.Com Content Network
Cyclic acetals are very much more stable against acid hydrolysis than acyclic acetals. Consequently acyclic acetals are used practically only when a very mild cleavage is required or when two different protected carbonyl groups must be differentiated in their liberation.
Subsequently, the nitrogen radical abstracts a proton from the benzylic carbon, forming the aci-nitro compound. Depending on pH, solvent and the extent of substitution, the aci-nitro intermediate decays at a rate of roughly 10 2 –10 4 s −1. [2]
The structure of the acetoxy group blue.. In organic chemistry, the acetoxy group (abbr. AcO or OAc; IUPAC name: acetyloxy [1]), is a functional group with the formula −OCOCH 3 and the structure −O−C(=O)−CH 3.
Generic structure of acetals. In organic chemistry, an acetal is a functional group with the connectivity R 2 C(OR') 2. Here, the R groups can be organic fragments (a carbon atom, with arbitrary other atoms attached to that) or hydrogen, while the R' groups must be organic fragments not hydrogen. The two R' groups can be equivalent to each ...
In organic chemistry, an acetonide is the functional group composed of the cyclic ketal of a diol with acetone. The more systematic name for this structure is an isopropylidene ketal. Acetonide is a common protecting group for 1,2- and 1,3-diols. [1] The protecting group can be removed by hydrolysis of the ketal using dilute aqueous acid.
A Schlenk line with four ports. The cold trap is on the right. Close-up view, showing the double-oblique stopcock, which allows vacuum (rear line) or inert gas (front line) to be selected. The Schlenk line (also vacuum gas manifold) is a commonly used chemistry apparatus developed by Wilhelm Schlenk. [1] It consists of a dual manifold with ...
VSA typically draws the gas through the separation process with a vacuum. For oxygen and nitrogen VSA systems, the vacuum is typically generated by a blower. Hybrid vacuum pressure swing adsorption (VPSA) systems also exist. VPSA systems apply pressurized gas to the separation process and also apply a vacuum to the purge gas.
This intermediate decomposes by the evolution of nitrogen gas forming the tertiary carbocation intermediate (3). Initial steps in the Buchner–Curtius–Schlotterbeck reaction mechanism. The reaction is then completed either by the reformation of the carbonyl through an 1,2-rearrangement or by the formation of the epoxide.