Search results
Results from the WOW.Com Content Network
In propositional logic, the double negation of a statement states that "it is not the case that the statement is not true". In classical logic, every statement is logically equivalent to its double negation, but this is not true in intuitionistic logic; this can be expressed by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.
For example, 5.7 ± 0.2 may be anywhere in the range from 5.5 to 5.9 inclusive. In scientific usage, it sometimes refers to a probability of being within the stated interval, usually corresponding to either 1 or 2 standard deviations (a probability of 68.3% or 95.4% in a normal distribution ).
A double negative is a construction occurring when two forms of grammatical negation are used in the same sentence. This is typically used to convey a different shade of meaning from a strictly positive sentence ("You're not unattractive" vs "You're attractive").
How to Solve It suggests the following steps when solving a mathematical problem: . First, you have to understand the problem. [2]After understanding, make a plan. [3]Carry out the plan.
Some elementary teachers use raised minus signs before numbers to disambiguate them from the operation of subtraction. [21] The same convention is also used in some computer languages. For example, subtracting −5 from 3 might be read as "positive three take away negative 5", and be shown as 3 − − 5 becomes 3 + 5 = 8, which can be read as:
One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.
In the 9th century, Islamic mathematicians were familiar with negative numbers from the works of Indian mathematicians, but the recognition and use of negative numbers during this period remained timid. [5] Al-Khwarizmi in his Al-jabr wa'l-muqabala (from which the word "algebra" derives) did not use negative numbers or negative coefficients. [5]
Note that both f + and f − are non-negative functions. A peculiarity of terminology is that the 'negative part' is neither negative nor a part (like the imaginary part of a complex number is neither imaginary nor a part). The function f can be expressed in terms of f + and f − as = +.