enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Interstitial site - Wikipedia

    en.wikipedia.org/wiki/Interstitial_site

    A close packed unit cell, both face-centered cubic and hexagonal close packed, can form two different shaped holes. Looking at the three green spheres in the hexagonal packing illustration at the top of the page, they form a triangle-shaped hole. If an atom is arranged on top of this triangular hole it forms a tetrahedral interstitial hole.

  3. Atomic packing factor - Wikipedia

    en.wikipedia.org/wiki/Atomic_packing_factor

    where N particle is the number of particles in the unit cell, V particle is the volume of each particle, and V unit cell is the volume occupied by the unit cell. It can be proven mathematically that for one-component structures, the most dense arrangement of atoms has an APF of about 0.74 (see Kepler conjecture), obtained by the close-packed ...

  4. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    Here there is a choice between separating the spheres into regions of close-packed equal spheres, or combining the multiple sizes of spheres into a compound or interstitial packing. When many sizes of spheres (or a distribution ) are available, the problem quickly becomes intractable, but some studies of binary hard spheres (two sizes) are ...

  5. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    The unit cell is defined as the smallest repeating unit having the full symmetry of the crystal structure. [2] The geometry of the unit cell is defined as a parallelepiped, providing six lattice parameters taken as the lengths of the cell edges (a, b, c) and the angles between them (α, β, γ). The positions of particles inside the unit cell ...

  6. Close-packing of equal spheres - Wikipedia

    en.wikipedia.org/wiki/Close-packing_of_equal_spheres

    The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction. The Kepler conjecture states that this is the highest density that can be achieved by any arrangement of spheres, either regular or irregular.

  7. Cubic crystal system - Wikipedia

    en.wikipedia.org/wiki/Cubic_crystal_system

    A network model of a primitive cubic system The primitive and cubic close-packed (also known as face-centered cubic) unit cells. In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.

  8. Frank–Kasper phases - Wikipedia

    en.wikipedia.org/wiki/Frank–Kasper_phases

    Projection of unit cell of sigma phase with CrFe structure along c axis Unit cell of μ phase with W 6 Fe 7 structure projected along c-axis. Topologically close pack ( TCP ) phases , also known as Frank-Kasper (FK) phases , are one of the largest groups of intermetallic compounds, known for their complex crystallographic structure and physical ...

  9. Crystallographic defect - Wikipedia

    en.wikipedia.org/wiki/Crystallographic_defect

    Stacking faults occur in a number of crystal structures, but the common example is in close-packed structures. They are formed by a local deviation of the stacking sequence of layers in a crystal. An example would be the ABABCABAB stacking sequence. A twin boundary is a defect that introduces a plane of mirror symmetry in the ordering of a crystal.