enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the quadrilateral to zero. Brahmagupta's formula gives the area ⁠ K {\displaystyle K} ⁠ of a cyclic quadrilateral whose sides have lengths ⁠ a , {\displaystyle a,} ⁠ ⁠ b , {\displaystyle b,} ⁠ ⁠ c , {\displaystyle c ...

  3. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    one pair of parallel sides – a trapezium (τραπέζιον), divided into isosceles (equal legs) and scalene (unequal) trapezia; no parallel sides – trapezoid (τραπεζοειδή, trapezoeidé, literally 'trapezium-like' (εἶδος means 'resembles'), in the same way as cuboid means 'cube-like' and rhomboid means 'rhombus-like')

  4. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The above formula is known as the shoelace formula or the surveyor's formula. If we locate the vertices in the complex plane and denote them in counterclockwise sequence as a = x A + y A i , b = x B + y B i , and c = x C + y C i , and denote their complex conjugates as a ¯ {\displaystyle {\bar {a}}} , b ¯ {\displaystyle {\bar {b}}} , and c ...

  5. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  6. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  7. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.

  8. Sum of angles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Sum_of_angles_of_a_triangle

    An easy formula for these properties is that in any three points in any shape, there is a triangle formed. Triangle ABC (example) has 3 points, and therefore, three angles; angle A, angle B, and angle C. Angle A, B, and C will always, when put together, will form 360 degrees. So, ∠A + ∠B + ∠C = 360°

  9. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length ⁠ ⁠, which has area 1. There are several ways to calculate the area of an arbitrary triangle.