Search results
Results from the WOW.Com Content Network
The same team demonstrated in 2017 the first creation of a Bose–Einstein condensate in space [73] and it is also the subject of two upcoming experiments on the International Space Station. [74] [75] Researchers in the new field of atomtronics use the properties of Bose–Einstein condensates in the emerging quantum technology of matter-wave ...
The thermodynamics of an ideal Bose gas is best calculated using the grand canonical ensemble.The grand potential for a Bose gas is given by: = = (). where each term in the sum corresponds to a particular single-particle energy level ε i; g i is the number of states with energy ε i; z is the absolute activity (or "fugacity"), which may also be expressed in terms of the chemical ...
States of matter that are not commonly encountered, such as Bose–Einstein condensates, fermionic condensates, nuclear matter, quantum spin liquid, string-net liquid, supercritical fluid, color-glass condensate, quark–gluon plasma, Rydberg matter, Rydberg polaron, photonic matter, Wigner crystal, [1] Superfluid and time crystal but whose ...
Bose's "error" leads to what is now called Bose–Einstein statistics. Bose and Einstein extended the idea to atoms and this led to the prediction of the existence of phenomena which became known as Bose–Einstein condensate, a dense collection of bosons (which are particles with integer spin, named after Bose), which was demonstrated to exist ...
A Bose–Einstein condensate (BEC) is a state of matter of a dilute gas of weakly interacting bosons confined in an external potential and cooled to temperatures very near absolute zero. Under such conditions, a large fraction of the bosons occupy the lowest quantum state of the external potential, at which point quantum effects become apparent ...
Bose–Einstein condensate, a substance which occurs at very low temperatures in a system of bosons; Fermionic condensate, a substance which occurs at very low temperatures in a system of fermions; Gluon condensate, a non-perturbative property of the QCD vacuum
As a result, at very low energies (or temperatures), a great majority of the bosons in a Bose gas can be crowded into the lowest energy state, creating a Bose–Einstein condensate. Bose and Einstein have established that the statistical properties of a Bose gas are governed by the Bose–Einstein statistics. In Bose–Einstein statistics, any ...
A supersolid is a special quantum state of matter where particles form a rigid, spatially ordered structure, but also flow with zero viscosity.This is in contradiction to the intuition that flow, and in particular superfluid flow with zero viscosity, is a property exclusive to the fluid state, e.g., superconducting electron and neutron fluids, gases with Bose–Einstein condensates, or ...