enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ramanujan's sum - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_sum

    In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula = (,) =,where (a, q) = 1 means that a only takes on values coprime to q.

  3. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  4. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The nth partial sum is given by a simple formula: = = (+). This equation was known to the Pythagoreans as early as the sixth century BCE. [5] Numbers of this form are called triangular numbers, because they can be arranged as an equilateral triangle.

  5. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    One may also simultaneously limit the number and size of the parts. Let p(N, M; n) denote the number of partitions of n with at most M parts, each of size at most N. Equivalently, these are the partitions whose Young diagram fits inside an M × N rectangle.

  6. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]

  7. Taxicab number - Wikipedia

    en.wikipedia.org/wiki/Taxicab_number

    Srinivasa Ramanujan (picture) was bedridden when he developed the idea of taxicab numbers, according to an anecdote from G. H. Hardy.. In mathematics, the nth taxicab number, typically denoted Ta(n) or Taxicab(n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. [1]

  8. Arithmetic function - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_function

    Two whole numbers m and n are called coprime if their greatest common divisor is 1, that is, if there is no prime number that divides both of them. Then an arithmetic function a is additive if a(mn) = a(m) + a(n) for all coprime natural numbers m and n; multiplicative if a(mn) = a(m)a(n) for all coprime natural numbers m and n.

  9. Pythagorean quadruple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_quadruple

    A Pythagorean quadruple is called primitive if the greatest common divisor of its entries is 1. Every Pythagorean quadruple is an integer multiple of a primitive quadruple. The set of primitive Pythagorean quadruples for which a is odd can be generated by the formulas = +, = (+), = (), = + + +, where m, n, p, q are non-negative integers with greatest common divisor 1 such that m + n + p + q is o