Search results
Results from the WOW.Com Content Network
The net force required to produce this acceleration ... the air at a speed of 50 m/s its momentum can be calculated to be 50,000 kg.m/s. ... momentum relationship ...
The Lorentz force law provides an expression for the force upon a charged body that can be plugged into Newton's second law in order to calculate its acceleration. [ 75 ] : 85 According to the Lorentz force law, a charged body in an electric field experiences a force in the direction of that field, a force proportional to its charge q ...
In classical mechanics, impulse (symbolized by J or Imp) is the change in momentum of an object. If the initial momentum of an object is p 1, and a subsequent momentum is p 2, the object has received an impulse J: =. Momentum is a vector quantity, so impulse is also a vector quantity.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.
The four-force is defined as the rate of change in the four-momentum of a particle with respect to the particle's proper time.Hence,: =. For a particle of constant invariant mass >, the four-momentum is given by the relation =, where = (,) is the four-velocity.
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().
Calculation of the speed difference for a uniform acceleration. Uniform or constant acceleration is a type of motion in which the velocity of an object changes by an equal amount in every equal time period. A frequently cited example of uniform acceleration is that of an object in free fall in a uniform gravitational field.