Search results
Results from the WOW.Com Content Network
The cycles of synthesis and degradation of ATP; 2 and 1 represent input and output of energy, respectively. ATP is stable in aqueous solutions between pH 6.8 and 7.4 (in the absence of catalysts). At more extreme pH levels, it rapidly hydrolyses to ADP and phosphate. Living cells maintain the ratio of ATP to ADP at a point ten orders of ...
In secondary active transport, also known as cotransport or coupled transport, energy is used to transport molecules across a membrane; however, in contrast to primary active transport, there is no direct coupling of ATP. Instead, it relies upon the electrochemical potential difference created by pumping ions in/out of the cell. [18]
Bioenergetics is a field in biochemistry and cell biology that concerns energy flow through living systems. [1] This is an active area of biological research that includes the study of the transformation of energy in living organisms and the study of thousands of different cellular processes such as cellular respiration and the many other metabolic and enzymatic processes that lead to ...
This Mg 2+ ion also coordinates with the terminal aspartate residue in the Walker B motif through the attacking H 2 O. [33] [34] [39] A general base, which may be the glutamate residue adjacent to the Walker B motif, [31] [40] [46] glutamine in the Q-loop, [30] [36] [40] or a histidine in the switch region that forms a hydrogen bond with the γ ...
The ATP generated in this process is made by substrate-level phosphorylation, which does not require oxygen. Fermentation is less efficient at using the energy from glucose: only 2 ATP are produced per glucose, compared to the 38 ATP per glucose nominally produced by aerobic respiration. Glycolytic ATP, however, is produced more quickly.
Since energy is released when ATP is broken down, energy is required to rebuild or resynthesize it. The building blocks of ATP synthesis are the by-products of its breakdown; adenosine diphosphate (ADP) and inorganic phosphate (P i). The energy for ATP resynthesis comes from three different series of chemical reactions that take place within ...
The coupling of ATP hydrolysis and transport is a chemical reaction in which a fixed number of solute molecules are transported for each ATP molecule hydrolyzed; for the Na + /K + exchanger, this is three Na + ions out of the cell and two K+ ions inside per ATP molecule hydrolyzed.
The result is that the cell or mitochondrion expends energy to generate a proton-motive force, but the proton-motive force is dissipated before the ATP synthase can recapture this energy and use it to make ATP. Because the intracellular supply of protons is replenished, uncouplers actually stimulate cellular metabolism and oxygen consumption ...