Search results
Results from the WOW.Com Content Network
The nitro group is one of the most common explosophores (functional group that makes a compound explosive) used globally. The nitro group is also strongly electron-withdrawing. Because of this property, C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards ...
An electron withdrawing group (EWG) will have the opposite effect on the nucleophilicity of the ring. The EWG removes electron density from a π system, making it less reactive in this type of reaction, [ 2 ] [ 3 ] and therefore called deactivating groups .
An electron-withdrawing group (EWG) is a group or atom that has the ability to draw electron density toward itself and away from other adjacent atoms. [1] This electron density transfer is often achieved by resonance or inductive effects.
The resulting intermediate, named the Meisenheimer complex (2a), the ipso carbon is temporarily bonded to the hydroxyl group. This Meisenheimer complex is extra stabilized by the additional electron-withdrawing nitro group (2b). In order to return to a lower energy state, either the hydroxyl group leaves, or the chloride leaves.
Electron-withdrawing groups such as other nitro are deactivating. Nitration is accelerated by the presence of activating groups such as amino, hydroxy and methyl groups also amides and ethers resulting in para and ortho isomers. In addition to regioselectivity, the degree of nitration is of interest.
The nitro group in the molecule serves as an electron withdrawing group that makes the molecule a good candidate as a dienophile. It readily forms an adduct with cyclopentadiene, spiroheptadiene, and their derivatives in a [4+2] cycloaddition. [1] Nitroethene can react at the 2π electron source in a [3+2] cycloaddition with nitrones. [5] [6]
Groups that are electron-withdrawing by resonance decrease the electron density especially at positions 2, 4 and 6, leaving positions 3 and 5 as the ones with comparably higher reactivity, so these types of groups are meta directors (see below).
In this general Michael addition scheme, either or both of R and R' on the nucleophile (the Michael donor) represent electron-withdrawing substituents such as acyl, cyano, nitro, or sulfone groups, which make the adjacent methylene hydrogen acidic enough to form a carbanion when reacted with the base, B:.