enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sampling (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(signal_processing)

    The sampling frequency or sampling rate, , is the average number of samples obtained in one second, thus = /, with the unit samples per second, sometimes referred to as hertz, for example 48 kHz is 48,000 samples per second.

  3. Nyquist frequency - Wikipedia

    en.wikipedia.org/wiki/Nyquist_frequency

    In this example, f s is the sampling rate, and 0.5 cycle/sample × f s is the corresponding Nyquist frequency. The black dot plotted at 0.6 f s represents the amplitude and frequency of a sinusoidal function whose frequency is 60% of the sample rate. The other three dots indicate the frequencies and amplitudes of three other sinusoids that ...

  4. Nyquist rate - Wikipedia

    en.wikipedia.org/wiki/Nyquist_rate

    Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing, the Nyquist rate, named after Harry Nyquist, is a value equal to twice the highest frequency of a given function or signal

  5. Nyquist–Shannon sampling theorem - Wikipedia

    en.wikipedia.org/wiki/Nyquist–Shannon_sampling...

    The Nyquist–Shannon sampling theorem is an essential principle for digital signal processing linking the frequency range of a signal and the sample rate required to avoid a type of distortion called aliasing.

  6. Sample-rate conversion - Wikipedia

    en.wikipedia.org/wiki/Sample-rate_conversion

    Sample-rate conversion, sampling-frequency conversion or resampling is the process of changing the sampling rate or sampling frequency of a discrete signal to obtain a new discrete representation of the underlying continuous signal. [1]

  7. Downsampling (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Downsampling_(signal...

    Reduce high-frequency signal components with a digital lowpass filter. Decimate the filtered signal by M; that is, keep only every M th sample. Step 2 alone creates undesirable aliasing (i.e. high-frequency signal components will copy into the lower frequency band and be mistaken for lower frequencies). Step 1, when necessary, suppresses ...

  8. 44,100 Hz - Wikipedia

    en.wikipedia.org/wiki/44,100_Hz

    The selection of the sample rate was based primarily on the need to reproduce the audible frequency range of 20–20,000 Hz (20 kHz). The Nyquist–Shannon sampling theorem states that a sampling rate of more than twice the maximum frequency of the signal to be recorded is needed, resulting in a required rate of greater than 40 kHz.

  9. Oversampling - Wikipedia

    en.wikipedia.org/wiki/Oversampling

    The sampling theorem states that sampling frequency would have to be greater than 200 Hz. Sampling at four times that rate requires a sampling frequency of 800 Hz. This gives the anti-aliasing filter a transition band of 300 Hz ((f s /2) − B = (800 Hz/2) − 100 Hz = 300 Hz) instead of 0 Hz if the sampling frequency was 200 Hz. Achieving an ...