Search results
Results from the WOW.Com Content Network
The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers, the "factoring problem". Breaking RSA encryption is known as the RSA problem. Whether it is as difficult as the factoring problem is an open question. [3] There are no published methods to defeat the system if a large enough key is used.
Each of the RC5 contests is named after the variant of the RC5 cipher used. The name RC5-w/r/b indicates that the cipher used w-bit words, r rounds, and a key made up of b bytes. The contests are often referred to by the names of the corresponding distributed.net projects, for example RC5-32/12/9 is often known as RC5-72 due to the 72-bit key size.
More specifically, the RSA problem is to efficiently compute P given an RSA public key (N, e) and a ciphertext C ≡ P e (mod N). The structure of the RSA public key requires that N be a large semiprime (i.e., a product of two large prime numbers), that 2 < e < N, that e be coprime to φ(N), and that 0 ≤ C < N.
The first RSA numbers generated, from RSA-100 to RSA-500, were labeled according to their number of decimal digits. Later, beginning with RSA-576, binary digits are counted instead. An exception to this is RSA-617, which was created before the change in the numbering scheme.
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. [1] [2] Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions.
The RSA Factoring Challenge was a challenge put forward by RSA Laboratories on March 18, 1991 [1] to encourage research into computational number theory and the practical difficulty of factoring large integers and cracking RSA keys used in cryptography.
In the RSA cryptosystem, Bob might tend to use a small value of d, rather than a large random number to improve the RSA decryption performance. However, Wiener's attack shows that choosing a small value for d will result in an insecure system in which an attacker can recover all secret information, i.e., break the RSA system.
RSA (cryptosystem) (Rivest–Shamir–Adleman), for public-key encryption RSA Conference, annual gathering; RSA Factoring Challenge, for factoring a set of semi-prime numbers; RSA numbers, with two prime numbers as factors