Search results
Results from the WOW.Com Content Network
Infinitesimal numbers were introduced in the development of calculus, in which the derivative was first conceived as a ratio of two infinitesimal quantities. This definition was not rigorously formalized. As calculus developed further, infinitesimals were replaced by limits, which can be calculated using the standard real numbers.
Mathematical psychology is an approach to psychological research that is based on mathematical modeling of perceptual, thought, cognitive and motor processes, and on the establishment of law-like rules that relate quantifiable stimulus characteristics with quantifiable behavior (in practice often constituted by task performance).
The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using limits rather than infinitesimals.
Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.
In mathematics, nonstandard calculus is the modern application of infinitesimals, in the sense of nonstandard analysis, to infinitesimal calculus. It provides a rigorous justification for some arguments in calculus that were previously considered merely heuristic .
Calculus, originally called infinitesimal calculus, is a mathematical discipline focused on limits, continuity, derivatives, integrals, and infinite series.Many elements of calculus appeared in ancient Greece, then in China and the Middle East, and still later again in medieval Europe and in India.
Leibniz's concept of infinitesimals, long considered to be too imprecise to be used as a foundation of calculus, was eventually replaced by rigorous concepts developed by Weierstrass and others in the 19th century. Consequently, Leibniz's quotient notation was re-interpreted to stand for the limit of the modern definition.
In non-standard calculus the limit of a function is defined by: = if and only if for all , is infinitesimal whenever x − a is infinitesimal. Here R ∗ {\displaystyle \mathbb {R} ^{*}} are the hyperreal numbers and f* is the natural extension of f to the non-standard real numbers.