enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Copper (II) chloride - Wikipedia

    en.wikipedia.org/wiki/Copper(II)_chloride

    Copper(II) chloride is used as a catalyst in a variety of processes that produce chlorine by oxychlorination. The Deacon process takes place at about 400 to 450 °C in the presence of a copper chloride: [8] 4 HCl + O 2 → 2 Cl 2 + 2 H 2 O. Copper(II) chloride catalyzes the chlorination in the production of vinyl chloride and dichloromethane. [8]

  3. Copper–chlorine cycle - Wikipedia

    en.wikipedia.org/wiki/Copper–chlorine_cycle

    Simplified diagram of the Copper–Chlorine cycle. The copper–chlorine cycle (Cu–Cl cycle) is a four-step thermochemical cycle for the production of hydrogen. The Cu–Cl cycle is a hybrid process that employs both thermochemical and electrolysis steps. It has a maximum temperature requirement of about 530 degrees Celsius. [1]

  4. Deacon process - Wikipedia

    en.wikipedia.org/wiki/Deacon_process

    The process was based on the oxidation of hydrogen chloride: 4 HCl + O 2 → 2 Cl 2 + 2H 2 O. The reaction takes place at about 400 to 450 °C in the presence of a variety of catalysts, including copper chloride (CuCl 2). Three companies developed commercial processes for producing chlorine based on the Deacon reaction: [1]

  5. Electrolytic process - Wikipedia

    en.wikipedia.org/wiki/Electrolytic_process

    Electrolysis is usually done in bulk using hundreds of sheets of metal connected to an electric power source. In the production of copper, these pure sheets of copper are used as starter material for the cathodes, and are then lowered into a solution such as copper sulphate with the large anodes that are cast from impure (97% pure) copper.

  6. Electrochlorination - Wikipedia

    en.wikipedia.org/wiki/Electrochlorination

    A low voltage DC current is applied, electrolysis happens producing sodium hypochlorite and hydrogen gas (H 2). The solution travels to a tank that separates the hydrogen gas based on its low density. [1] Only water and sodium chloride are used. The simplified chemical reaction is: NaCl + H 2 O + energy → NaOCl + H 2 [citation needed]

  7. Electrolysis - Wikipedia

    en.wikipedia.org/wiki/Electrolysis

    The reaction at the anode results in chlorine gas from chlorine ions: 2 Cl − → Cl 2 + 2 e −. The reaction at the cathode results in hydrogen gas and hydroxide ions: 2 H 2 O + 2 e − → H 2 + 2 OH −. Without a partition between the electrodes, the OH − ions produced at the cathode are free to diffuse throughout the electrolyte to the ...

  8. Chlorine production - Wikipedia

    en.wikipedia.org/wiki/Chlorine_production

    Chlorine can be manufactured by the electrolysis of a sodium chloride solution , which is known as the Chloralkali process. The production of chlorine results in the co-products caustic soda (sodium hydroxide, NaOH) and hydrogen gas (H 2). These two products, as well as chlorine itself, are highly reactive.

  9. Electrochemistry - Wikipedia

    en.wikipedia.org/wiki/Electrochemistry

    Reaction 1 is discarded as it has the most negative value on standard reduction potential thus making it less thermodynamically favorable in the process. When comparing the reduction potentials in reactions 2 and 4, the oxidation of chloride ion is favored over oxidation of water, thus chlorine gas is produced at the anode and not oxygen gas.