Search results
Results from the WOW.Com Content Network
Sodium amide is a standard base for dehydrohalogenations. [9] It induces the loss of two equivalents of hydrogen bromide from a vicinal dibromoalkane to give a carbon–carbon triple bond, as in a preparation of phenylacetylene. [10] Usually two equivalents of sodium amide yields the desired alkyne.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Sodium tends to form water-soluble compounds, such as halides, sulfates, nitrates, carboxylates and carbonates. The main aqueous species are the aquo complexes [Na(H 2 O) n ] + , where n = 4–8; with n = 6 indicated from X-ray diffraction data and computer simulations.
A strong base is a basic chemical compound that can remove a proton (H +) from (or deprotonate) a molecule of even a very weak acid (such as water) in an acid–base reaction. Common examples of strong bases include hydroxides of alkali metals and alkaline earth metals, like NaOH and Ca(OH) 2, respectively. Due to their low solubility, some ...
Compounds of the metallic elements usually form simple aqua ions with the formula [M(H 2 O) n] z+ in low oxidation states. With the higher oxidation states the simple aqua ions dissociate losing hydrogen ions to yield complexes that contain both water molecules and hydroxide or oxide ions, such as the vanadium(IV) species [VO(H 2 O) 5] 2+.
instead of attached to Cl − anions and the conjugate bases will be weaker than water molecules. On the other hand, if a chemical is a weak acid its conjugate base will not necessarily be strong. Consider that ethanoate, the conjugate base of ethanoic acid, has a base splitting constant (Kb) of about 5.6 × 10 −10, making it a weak base. In ...
Acids and bases are aqueous solutions, as part of their Arrhenius definitions. [1] An example of an Arrhenius acid is hydrogen chloride (HCl) because of its dissociation of the hydrogen ion when dissolved in water. Sodium hydroxide (NaOH) is an Arrhenius base because it dissociates the hydroxide ion when it is dissolved in water. [3]
For example, in the formation of an ammonium ion from ammonia and hydrogen the ammonia molecule donates a pair of electrons to the proton; [11] the identity of the electrons is lost in the ammonium ion that is formed. Nevertheless, Lewis suggested that an electron-pair donor be classified as a base and an electron-pair acceptor be classified as ...