Search results
Results from the WOW.Com Content Network
Industrially, formaldehyde is produced by catalytic oxidation of methanol. The most commonly used catalysts are silver metal or a mixture of an iron oxide with molybdenum and/or vanadium . In the recently more commonly used Formox process using iron oxide and molybdenum and/or vanadium, methanol and oxygen react at 300-400°C to produce ...
Formaldehyde (/ f ɔːr ˈ m æ l d ɪ h aɪ d / ⓘ for-MAL-di-hide, US also / f ə r-/ ⓘ fər-) (systematic name methanal) is an organic compound with the chemical formula CH 2 O and structure H−CHO, more precisely H 2 C=O. The compound is a pungent, colourless gas that polymerises spontaneously into paraformaldehyde.
Phenol, formaldehyde, water and catalyst are mixed in the desired amount, depending on the resin to be formed, and are then heated. The first part of the reaction, at around 70 °C, forms a thick reddish-brown tacky material, which is rich in hydroxymethyl and benzylic ether groups.
In organic chemistry, the Mannich reaction is a three-component organic reaction that involves the amino alkylation of an acidic proton next to a carbonyl (C=O) functional group by formaldehyde (H−CHO) and a primary or secondary amine (−NH 2) or ammonia (NH 3). [1] The final product is a β-amino-carbonyl compound also known as a Mannich base.
The Blanc chloromethylation (also called the Blanc reaction) is the chemical reaction of aromatic rings with formaldehyde and hydrogen chloride to form chloromethyl arenes. The reaction is catalyzed by Lewis acids such as zinc chloride. [1] The reaction was discovered by Gustave Louis Blanc (1872-1927) in 1923. [2] [3]
Making Bakelite is a multi-stage process. It begins with the heating of phenol and formaldehyde in the presence of a catalyst such as hydrochloric acid, zinc chloride, or the base ammonia. This creates a liquid condensation product, referred to as Bakelite A, which is soluble in alcohol, acetone, or additional phenol. Heated further, the ...
Ley oxidation uses NMO as the stoichiometric oxidant with tetrapropylammonium perruthenate as a catalyst. Fétizon oxidation, also a seldom-used method, uses silver carbonate supported on Celite. This reagent operates through single electron oxidation by the silver cations. Another method is the oxoammonium-catalyzed oxidation.
Cyanohydrin reaction of formaldehyde to hydroxyacetonitrile or glycolonitrile with sodium cyanide in Organic Syntheses Coll. Vol. 2, p. 387; Vol. 13, p. 56 Article Cyanohydrin reaction of formaldehyde with potassium cyanide Organic Syntheses Coll. Vol. 3, p. 436; Vol. 27, p. 41 Article