Ads
related to: examples of simplifying an expression with variables 2
Search results
Results from the WOW.Com Content Network
Algebraic notation describes the rules and conventions for writing mathematical expressions, as well as the terminology used for talking about parts of expressions. For example, the expression + has the following components: Algebraic expression notation: 1 – power (exponent) 2 – coefficient 3 – term
For statements with several variables, substitution is a common technique to replace one variable with an equivalent expression that does not use this variable. For example, if one knows that y = 3 x {\displaystyle y=3x} then one can simplify the expression 7 x y {\displaystyle 7xy} to arrive at 21 x 2 {\displaystyle 21x^{2}} .
A rational algebraic expression (or rational expression) is an algebraic expression that can be written as a quotient of polynomials, such as x 2 + 4x + 4. An irrational algebraic expression is one that is not rational, such as √ x + 4.
An expression with no variables would define a constant function. Usually, two expressions are considered equal or equivalent if they define the same function. Such an equality is called a "semantic equality", that is, both expressions "mean the same thing."
In the second step, the distributive law is used to simplify each of the two terms. Note that this process involves a total of three applications of the distributive property. In contrast to the FOIL method, the method using distributivity can be applied easily to products with more terms such as trinomials and higher.
Terms are within the same expression and are combined by either addition or subtraction. For example, take the expression: + There are two terms in this expression. Notice that the two terms have a common factor, that is, both terms have an . This means that the common factor variable can be factored out, resulting in
An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include: Simplification of algebraic expressions, in computer algebra; Simplification of boolean expressions i.e. logic optimization
Ads
related to: examples of simplifying an expression with variables 2