enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hypersurface - Wikipedia

    en.wikipedia.org/wiki/Hypersurface

    A hypersurface in a (Euclidean, affine, or projective) space of dimension two is a plane curve. In a space of dimension three, it is a surface. For example, the equation + + + = defines an algebraic hypersurface of dimension n − 1 in the Euclidean space of dimension n.

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The Euclidean algorithm was probably invented before Euclid, depicted here holding a compass in a painting of about 1474. The Euclidean algorithm is one of the oldest algorithms in common use. [27] It appears in Euclid's Elements (c. 300 BC), specifically in Book 7 (Propositions 1–2) and Book 10 (Propositions 2–3). In Book 7, the algorithm ...

  4. Hyperbolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_coordinates

    For example, in thermodynamics the isothermal process explicitly follows the hyperbolic path and work can be interpreted as a hyperbolic angle change. Similarly, a given mass M of gas with changing volume will have variable density δ = M / V , and the ideal gas law may be written P = k T δ so that an isobaric process traces a hyperbola in the ...

  5. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    Considered extrinsically, as a hypersurface embedded in ⁠ (+) ⁠-dimensional Euclidean space, an ⁠ ⁠-sphere is the locus of points at equal distance (the radius) from a given center point. Its interior , consisting of all points closer to the center than the radius, is an ⁠ ( n + 1 ) {\displaystyle (n+1)} ⁠ -dimensional ball .

  6. Hyperplane - Wikipedia

    en.wikipedia.org/wiki/Hyperplane

    In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...

  7. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    More generally, one can formulate a similar trick using the normal bundle to define the Laplace–Beltrami operator of any Riemannian manifold isometrically embedded as a hypersurface of Euclidean space. One can also give an intrinsic description of the Laplace–Beltrami operator on the sphere in a normal coordinate system.

  8. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    Similarly, if M is a hypersurface in a Riemannian manifold N, then the principal curvatures are the eigenvalues of its second-fundamental form. If k 1 , ..., k n are the n principal curvatures at a point p ∈ M and X 1 , ..., X n are corresponding orthonormal eigenvectors (principal directions), then the sectional curvature of M at p is given by

  9. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    The Gauss map can be defined for hypersurfaces in R n as a map from a hypersurface to the unit sphere S n − 1 ⊆ R n. For a general oriented k - submanifold of R n the Gauss map can also be defined, and its target space is the oriented Grassmannian G ~ k , n {\displaystyle {\tilde {G}}_{k,n}} , i.e. the set of all oriented k -planes in R n .