Search results
Results from the WOW.Com Content Network
A hypersurface in a (Euclidean, affine, or projective) space of dimension two is a plane curve. In a space of dimension three, it is a surface. For example, the equation + + + = defines an algebraic hypersurface of dimension n − 1 in the Euclidean space of dimension n.
The Euclidean algorithm was probably invented before Euclid, depicted here holding a compass in a painting of about 1474. The Euclidean algorithm is one of the oldest algorithms in common use. [27] It appears in Euclid's Elements (c. 300 BC), specifically in Book 7 (Propositions 1–2) and Book 10 (Propositions 2–3). In Book 7, the algorithm ...
For example, in thermodynamics the isothermal process explicitly follows the hyperbolic path and work can be interpreted as a hyperbolic angle change. Similarly, a given mass M of gas with changing volume will have variable density δ = M / V , and the ideal gas law may be written P = k T δ so that an isobaric process traces a hyperbola in the ...
Considered extrinsically, as a hypersurface embedded in (+) -dimensional Euclidean space, an -sphere is the locus of points at equal distance (the radius) from a given center point. Its interior , consisting of all points closer to the center than the radius, is an ( n + 1 ) {\displaystyle (n+1)} -dimensional ball .
In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...
More generally, one can formulate a similar trick using the normal bundle to define the Laplace–Beltrami operator of any Riemannian manifold isometrically embedded as a hypersurface of Euclidean space. One can also give an intrinsic description of the Laplace–Beltrami operator on the sphere in a normal coordinate system.
Similarly, if M is a hypersurface in a Riemannian manifold N, then the principal curvatures are the eigenvalues of its second-fundamental form. If k 1 , ..., k n are the n principal curvatures at a point p ∈ M and X 1 , ..., X n are corresponding orthonormal eigenvectors (principal directions), then the sectional curvature of M at p is given by
The Gauss map can be defined for hypersurfaces in R n as a map from a hypersurface to the unit sphere S n − 1 ⊆ R n. For a general oriented k - submanifold of R n the Gauss map can also be defined, and its target space is the oriented Grassmannian G ~ k , n {\displaystyle {\tilde {G}}_{k,n}} , i.e. the set of all oriented k -planes in R n .