Search results
Results from the WOW.Com Content Network
The diffusion current and drift current together are described by the drift–diffusion equation. [1] It is necessary to consider the part of diffusion current when describing many semiconductor devices. For example, the current near the depletion region of a p–n junction is dominated by the diffusion current. Inside the depletion region ...
Shockley derives an equation for the voltage across a p-n junction in a long article published in 1949. [2] Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3]
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
In a p-n junction diode, electrons and holes are the minority charge carriers in the p-region and the n-region, respectively. In an unbiased junction, due to the diffusion of charge carriers, the diffusion current, which flows from the p to n region, is exactly balanced by the equal and opposite drift current. [1]
The basic opamp diode log amplifier shown in the diagram utilizes the diode's exponential current-voltage relationship for the opamp's negative feedback path, with the diode's anode virtually grounded and its cathode connected to the opamp's output , used as the circuit output. The Shockley diode equation gives the current–voltage ...
Similarly, when the cell is operated at short circuit, = 0 and the current through the terminals is defined as the short-circuit current. It can be shown that for a high-quality solar cell (low R S and I 0, and high R SH) the short-circuit current is:
One-dimensional current; Negligible recombination-generation in space charge regions; Negligible electric fields outside of space charge regions. It is important to characterize the minority diffusion currents induced by injection of carriers. With regard to pn-junction diode, a key relation is the diffusion equation.
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage.