Search results
Results from the WOW.Com Content Network
For example, for a 1.6 GHz Pentium M, the clock frequency can be stepped down in 200 MHz decrements over the range from 1.6 to 0.6 GHz. At the same time, the voltage requirement decreases from 1.484 to 0.956 V. The result is that the power consumption theoretically goes down by a factor of 6.4.
For example, an IBM PC with an Intel 80486 CPU running at 50 MHz will be about twice as fast (internally only) as one with the same CPU and memory running at 25 MHz, while the same will not be true for MIPS R4000 running at the same clock rate as the two are different processors that implement different architectures and microarchitectures ...
The frequency at which a processor (CPU) operates is determined by applying a clock multiplier to the front-side bus (FSB) speed in some cases. For example, a processor running at 3200 MHz might be using a 400 MHz FSB. This means there is an internal clock multiplier setting (also called bus/core ratio) of 8. That is, the CPU is set to run at 8 ...
Both caches are direct-mapped and have a 4-byte cache line. The data cache is write through. All components on the CPU module operate at the same clock frequency as the R300A. A CPUCTL ASIC is also present, its purpose to provide interfacing and buffering between the faster CPU module and the slower 12.5 MHz system module.
A prescaler is an electronic counting circuit used to reduce a high frequency electrical signal to a lower frequency by integer division.The prescaler takes the basic timer clock frequency (which may be the CPU clock frequency or may be some higher or lower frequency) and divides it by some value before feeding it to the timer, according to how the prescaler register(s) are configured.
Modules are instead designed to run at different clock frequencies: for example, a PC-1600 module is designed to run at 100 MHz, and a PC-2100 is designed to run at 133 MHz. A module's clock speed designates the data rate at which it is guaranteed to perform, hence it is guaranteed to run at lower ( underclocking ) and can possibly run at ...
The DDR4 chips run at 1.2 V or less, [18] [19] compared to the 1.5 V of DDR3 chips, and have in excess of 2 billion data transfers per second. They were expected to be introduced at frequency rates of 2133 MHz, estimated to rise to a potential 4266 MHz [ 20 ] and lowered voltage of 1.05 V [ 21 ] by 2013.
This involves comparing the timer tick of the operating system (the tick that usually is 100–1000 times per second) and the speed of the CPU. If the OS timer and the CPU run on two independent clock crystals the situation is ideal and more or less the same as the previous example.