Search results
Results from the WOW.Com Content Network
OpenML: [494] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [495] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...
Subjective and objective identification, emerging subtasks of sentiment analysis to use syntactic, semantic features, and machine learning knowledge to identify if a sentence or document contains facts or opinions. Awareness of recognizing factual and opinions is not recent, having possibly first presented by Carbonell at Yale University in 1979.
Multimodal sentiment analysis also plays an important role in the advancement of virtual assistants through the application of natural language processing (NLP) and machine learning techniques. [5] In the healthcare domain, multimodal sentiment analysis can be utilized to detect certain medical conditions such as stress, anxiety, or depression. [8]
Deeplearning4j: Deep learning in Java and Scala on multi-GPU-enabled Spark. A general-purpose deep learning library for the JVM production stack running on a C++ scientific computing engine. Allows the creation of custom layers. Integrates with Hadoop and Kafka. Dlib: A toolkit for making real world machine learning and data analysis ...
Kaggle is a data science competition platform and online community for data scientists and machine learning practitioners under Google LLC.Kaggle enables users to find and publish datasets, explore and build models in a web-based data science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.
When LDA machine learning is employed, both sets of probabilities are computed during the training phase, using Bayesian methods and an Expectation Maximization algorithm. LDA is a generalization of older approach of probabilistic latent semantic analysis (pLSA), The pLSA model is equivalent to LDA under a uniform Dirichlet prior distribution.
The probabilistic model of LSA does not match observed data: LSA assumes that words and documents form a joint Gaussian model (ergodic hypothesis), while a Poisson distribution has been observed. Thus, a newer alternative is probabilistic latent semantic analysis, based on a multinomial model, which is reported to give better results than ...
Machine learning can also be used to produce datasets of spectral signatures of molecules that may be involved in the atmospheric production or consumption of particular chemicals – such as phosphine possibly detected on Venus – which could prevent miss assignments and, if accuracy is improved, be used in future detections and ...