Search results
Results from the WOW.Com Content Network
Some versions of brane cosmology, based on the large extra dimension idea, can explain the weakness of gravity relative to the other fundamental forces of nature, thus solving the hierarchy problem. In the brane picture, the electromagnetic , weak and strong nuclear force are localized on the brane, but gravity has no such constraint and ...
A point particle is a 0-brane, of dimension zero; a string, named after vibrating musical strings, is a 1-brane; a membrane, named after vibrating membranes such as drumheads, is a 2-brane. [2] The corresponding object of arbitrary dimension p is called a p-brane, a term coined by M. J. Duff et al. in 1988. [3]
The model is a braneworld theory developed while trying to solve the hierarchy problem of the Standard Model.It involves a finite five-dimensional bulk that is extremely warped and contains two branes: the Planckbrane (where gravity is a relatively strong force; also called "Gravitybrane") and the Tevbrane (our home with the Standard Model particles; also called "Weakbrane").
For example, a point particle can be viewed as a brane of dimension zero, while a string can be viewed as a brane of dimension one. It is also possible to consider higher-dimensional branes. In dimension p, these are called p-branes. Branes are dynamical objects which can propagate through spacetime according to the rules of quantum mechanics.
This is an accepted version of this page This is the latest accepted revision, reviewed on 28 December 2024. Hypothetical group of multiple universes Not to be confused with Metaverse. "Multiverses" redirects here. For the crossover fighting game, see MultiVersus. For other uses, see Multiverse (disambiguation). Part of a series on Physical cosmology Big Bang · Universe Age of the universe ...
Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. [1]
These principles have worked so well on simple examples that we can be reasonably confident they will work for more complex examples. For example, although general relativity includes equations that do not have exact solutions, it is widely accepted as a valid theory because all of its equations with exact solutions have been experimentally ...
A "closed universe" is necessarily a closed manifold. An "open universe" can be either a closed or open manifold. For example, in the Friedmann–Lemaître–Robertson–Walker (FLRW) model, the universe is considered to be without boundaries, in which case "compact universe" could describe a universe that is a closed manifold.