enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Y′UV - Wikipedia

    en.wikipedia.org/wiki/Y′UV

    This can be very important when converting from Y′UV (or Y′CbCr) to RGB, since the formulas above can produce "invalid" RGB values – i.e., values below 0% or very far above 100% of the range (e.g., outside the standard 16–235 luma range (and 16–240 chroma range) for TVs and HD content, or outside 0–255 for standard definition on PCs).

  3. YIQ - Wikipedia

    en.wikipedia.org/wiki/YIQ

    The YIQ color space at Y=0.5. Note that the I and Q chroma coordinates are scaled up to 1.0. See the formulae below in the article to get the right bounds. An image along with its Y, I, and Q components. YIQ is the color space used by the analog NTSC color TV system.

  4. CIE 1960 color space - Wikipedia

    en.wikipedia.org/wiki/CIE_1960_color_space

    Judd was the first to employ this type of transformation, and many others were to follow. Converting this RGB space to chromaticities one finds [4] [clarification needed The following formulae do not agree with u=R/(R+G+B) and v=G/(R+G+B)] Judd's UCS, with the Planckian locus and the isotherms from 1,000K to 10,000K, perpendicular to the locus.

  5. YCbCr - Wikipedia

    en.wikipedia.org/wiki/YCbCr

    YCbCr is sometimes abbreviated to YCC.Typically the terms Y′CbCr, YCbCr, YPbPr and YUV are used interchangeably, leading to some confusion. The main difference is that YPbPr is used with analog images and YCbCr with digital images, leading to different scaling values for U max and V max (in YCbCr both are ) when converting to/from YUV.

  6. Color space - Wikipedia

    en.wikipedia.org/wiki/Color_space

    A popular way to make a color space like RGB into an absolute color is to define an ICC profile, which contains the attributes of the RGB. This is not the only way to express an absolute color, but it is the standard in many industries. RGB colors defined by widely accepted profiles include sRGB and Adobe RGB.

  7. Chrominance - Wikipedia

    en.wikipedia.org/wiki/Chrominance

    For example, when an ordinary RGB digital image is compressed via the JPEG standard, the RGB color space is first converted (by a rotation matrix) to a YCbCr color space, because the three components in that space have less correlation redundancy and because the chrominance components can then be subsampled by a factor of 2 or 4 to further ...

  8. YCoCg - Wikipedia

    en.wikipedia.org/wiki/YCoCg

    The three values of the YCoCg color model are calculated as follows from the three color values of the RGB color model: [2] [] = [] [] The values of Y are in the range from 0 to 1, while Co and Cg are in the range of −0.5 to 0.5, as is typical with "YCC" color models such as YCbCr.

  9. CIE 1931 color space - Wikipedia

    en.wikipedia.org/wiki/CIE_1931_color_space

    A comparison between a typical normalized M cone's spectral sensitivity and the CIE 1931 luminosity function for a standard observer in photopic vision. In the CIE 1931 model, Y is the luminance, Z is quasi-equal to blue (of CIE RGB), and X is a mix of the three CIE RGB curves chosen to be nonnegative (see § Definition of the CIE XYZ color space).