enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. [1] Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.

  3. Metric - Wikipedia

    en.wikipedia.org/wiki/Metric

    In mathematics, metric may refer to one of two related, but distinct concepts: A function which measures distance between two points in a metric space A metric tensor , in differential geometry, which allows defining lengths of curves, angles, and distances in a manifold

  4. Metric system - Wikipedia

    en.wikipedia.org/wiki/Metric_system

    The metric system is a decimal-based system of measurement. The current international standard for the metric system is the International System of Units (Système international d'unités or SI), in which all units can be expressed in terms of seven base units: the metre (m), kilogram (kg), second (s), ampere (A), kelvin (K), mole (mol), and ...

  5. Contraction mapping - Wikipedia

    en.wikipedia.org/wiki/Contraction_mapping

    In mathematics, a contraction mapping, or contraction or contractor, on a metric space (M, d) is a function f from M to itself, with the property that there is some real number < such that for all x and y in M, ((), ()) (,).

  6. Measure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Measure_(mathematics)

    In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context.

  7. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    A metric space is called complete if all Cauchy sequences converge. Every incomplete space is isometrically embedded, as a dense subset, into a complete space (the completion). Every compact metric space is complete; the real line is non-compact but complete; the open interval (0,1) is incomplete. Every Euclidean space is also a complete metric ...

  8. Mathematical structure - Wikipedia

    en.wikipedia.org/wiki/Mathematical_structure

    A metric: there is a notion of distance between points. A geometry: it is equipped with a metric and is flat. A topology: there is a notion of open sets. There are interfaces among these: Its order and, independently, its metric structure induce its topology. Its order and algebraic structure make it into an ordered field.

  9. Complete metric space - Wikipedia

    en.wikipedia.org/wiki/Complete_metric_space

    In fact, a metric space is compact if and only if it is complete and totally bounded. This is a generalization of the Heine–Borel theorem, which states that any closed and bounded subspace of R n is compact and therefore complete. [1] Let (,) be a complete metric space.